Ads
related to: examples of dividing exponents in real life world problems practice questions
Search results
Results From The WOW.Com Content Network
For example, multiplication is granted a higher precedence than addition, and it has been this way since the introduction of modern algebraic notation. [ 2 ] [ 3 ] Thus, in the expression 1 + 2 × 3 , the multiplication is performed before addition, and the expression has the value 1 + (2 × 3) = 7 , and not (1 + 2) × 3 = 9 .
Arithmetic is the fundamental branch of mathematics that studies numbers and their operations. In particular, it deals with numerical calculations using the arithmetic operations of addition, subtraction, multiplication, and division. [1]
In mathematics, Kummer's theorem is a formula for the exponent of the highest power of a prime number p that divides a given binomial coefficient. In other words, it gives the p-adic valuation of a binomial coefficient. The theorem is named after Ernst Kummer, who proved it in a paper, (Kummer 1852).
For example, x has a single (real) super-root if n is odd, and up to two if n is even. [ citation needed ] Just as with the extension of tetration to infinite heights, the super-root can be extended to n = ∞ , being well-defined if 1/ e ≤ x ≤ e .
In mathematics, an algebraic expression is an expression built up from constants (usually, algebraic numbers) variables, and the basic algebraic operations: addition (+), subtraction (-), multiplication (×), division (÷), whole number powers, and roots (fractional powers).
Modular exponentiation is the remainder when an integer b (the base) is raised to the power e (the exponent), and divided by a positive integer m (the modulus); that is, c = b e mod m. From the definition of division, it follows that 0 ≤ c < m. For example, given b = 5, e = 3 and m = 13, dividing 5 3 = 125 by 13 leaves a remainder of c = 8.