When.com Web Search

  1. Ad

    related to: formula to find fibonacci number

Search results

  1. Results From The WOW.Com Content Network
  2. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    Fibonacci numbers are also strongly related to the golden ratio: Binet's formula expresses the n-th Fibonacci number in terms of n and the golden ratio, and implies that the ratio of two consecutive Fibonacci numbers tends to the golden ratio as n increases.

  3. Fibonacci - Wikipedia

    en.wikipedia.org/wiki/Fibonacci

    In the Fibonacci sequence, each number is the sum of the previous two numbers. Fibonacci omitted the "0" and first "1" included today and began the sequence with 1, 2, 3, ... . He carried the calculation up to the thirteenth place, the value 233, though another manuscript carries it to the next place, the value 377.

  4. Generalizations of Fibonacci numbers - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of...

    A repfigit, or Keith number, is an integer such that, when its digits start a Fibonacci sequence with that number of digits, the original number is eventually reached. An example is 47, because the Fibonacci sequence starting with 4 and 7 (4, 7, 11, 18, 29, 47) reaches 47.

  5. Golden ratio - Wikipedia

    en.wikipedia.org/wiki/Golden_ratio

    Eighteenth-century mathematicians Abraham de Moivre, Nicolaus I Bernoulli, and Leonhard Euler used a golden ratio-based formula which finds the value of a Fibonacci number based on its placement in the sequence; in 1843, this was rediscovered by Jacques Philippe Marie Binet, for whom it was named "Binet's formula". [29]

  6. Pisano period - Wikipedia

    en.wikipedia.org/wiki/Pisano_period

    For generalized Fibonacci sequences (satisfying the same recurrence relation, but with other initial values, e.g. the Lucas numbers) the number of occurrences of 0 per cycle is 0, 1, 2, or 4. The ratio of the Pisano period of n and the number of zeros modulo n in the cycle gives the rank of apparition or Fibonacci entry point of n .

  7. Formulas for generating Pythagorean triples - Wikipedia

    en.wikipedia.org/wiki/Formulas_for_generating...

    For Fibonacci numbers starting with F 1 = 0 and F 2 = 1 and with each succeeding Fibonacci number being the sum of the preceding two, one can generate a sequence of Pythagorean triples starting from (a 3, b 3, c 3) = (4, 3, 5) via

  8. Zeckendorf's theorem - Wikipedia

    en.wikipedia.org/wiki/Zeckendorf's_theorem

    where F n is the n th Fibonacci number. Such a sum is called the Zeckendorf representation of N. The Fibonacci coding of N can be derived from its Zeckendorf representation. For example, the Zeckendorf representation of 64 is 64 = 55 + 8 + 1. There are other ways of representing 64 as the sum of Fibonacci numbers 64 = 55 + 5 + 3 + 1 64 = 34 ...

  9. Jacques Philippe Marie Binet - Wikipedia

    en.wikipedia.org/wiki/Jacques_Philippe_Marie_Binet

    He is also recognized as the first to describe the rule for multiplying matrices in 1812, and Binet's formula expressing Fibonacci numbers in closed form is named in his honour, although the same result was known to Abraham de Moivre a century earlier.