Search results
Results From The WOW.Com Content Network
The solid angle, Ω, at the vertex of a Platonic solid is given in terms of the dihedral angle by Ω = q θ − ( q − 2 ) π . {\displaystyle \Omega =q\theta -(q-2)\pi .\,} This follows from the spherical excess formula for a spherical polygon and the fact that the vertex figure of the polyhedron { p , q } is a regular q -gon.
The convex regular icosahedron is usually referred to simply as the regular icosahedron, one of the five regular Platonic solids, and is represented by its Schläfli symbol {3, 5}, containing 20 triangular faces, with 5 faces meeting around each vertex.
One might characterise the Greek definition as follows: A regular polygon is a planar figure with all edges equal and all corners equal. A regular polyhedron is a solid (convex) figure with all faces being congruent regular polygons, the same number arranged all alike around each vertex.
A common and somewhat naive definition of a polyhedron is that it is a solid whose boundary can be covered by finitely many planes [4] [5] or that it is a solid formed as the union of finitely many convex polyhedra. [6]
A regular dodecahedron or pentagonal dodecahedron [notes 1] is a dodecahedron composed of regular pentagonal faces, three meeting at each vertex.It is an example of Platonic solids, described as cosmic stellation by Plato in his dialogues, and it was used as part of Solar System proposed by Johannes Kepler.
The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid. There are also three regular star dodecahedra, which are constructed as stellations of the convex form. All of these have icosahedral symmetry, order 120.
A solid angle of π sr is one quarter of that subtended by all of space. When all the solid angles at the vertices of a tetrahedron are smaller than π sr, O lies inside the tetrahedron, and because the sum of distances from O to the vertices is a minimum, O coincides with the geometric median, M, of the vertices.
In Middle Platonism, the Platonic Forms were not transcendent but immanent to rational minds, and the physical world was a living, ensouled being, the World-Soul. Pre-eminence in this period belongs to Plutarch .