Search results
Results From The WOW.Com Content Network
A regular decagon has all sides of equal length and each internal angle will always be equal to 144°. [1] Its Schläfli symbol is {10} [2] and can also be constructed as a truncated pentagon, t{5}, a quasiregular decagon alternating two types of edges.
Pentagon – 5 sides; Hexagon – 6 sides Lemoine hexagon; Heptagon – 7 sides; Octagon – 8 sides; Nonagon – 9 sides; Decagon – 10 sides; Hendecagon – 11 sides; Dodecagon – 12 sides; Tridecagon – 13 sides; Tetradecagon – 14 sides; Pentadecagon – 15 sides; Hexadecagon – 16 sides; Heptadecagon – 17 sides; Octadecagon – 18 ...
The icosidodecahedron has 6 central decagons. Projected into a sphere, they define 6 great circles . Fuller (1975) used these 6 great circles, along with 15 and 10 others in two other polyhedra to define his 31 great circles of the spherical icosahedron .
4 hexagons x 4 12 decagons x 6 100 irregular hexagons x 4 Petrie polygons: 1 pentagon x 2 1 octagon x 3 2 octagons x 4 ... Many other 4-polytopes are possible, but ...
In geometry a quadrilateral is a four-sided polygon, having four edges (sides) and four corners (vertices). The word is derived from the Latin words quadri, a variant of four, and latus, meaning "side".
Three squares of sides R can be cut and rearranged into a dodecagon of circumradius R, yielding a proof without words that its area is 3R 2. A regular dodecagon is a figure with sides of the same length and internal angles of the same size. It has twelve lines of reflective symmetry and rotational symmetry of order 12.
Individual polygons are named (and sometimes classified) according to the number of sides, combining a Greek-derived numerical prefix with the suffix -gon, e.g. pentagon, dodecagon. The triangle , quadrilateral and nonagon are exceptions, although the regular forms trigon , tetragon , and enneagon are sometimes encountered as well.
The convex regular dodecahedron also has three stellations, all of which are regular star dodecahedra.They form three of the four Kepler–Poinsot polyhedra.They are the small stellated dodecahedron {5/2, 5}, the great dodecahedron {5, 5/2}, and the great stellated dodecahedron {5/2, 3}.