When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Similarity (geometry) - Wikipedia

    en.wikipedia.org/wiki/Similarity_(geometry)

    On the other hand, ellipses are not all similar to each other, rectangles are not all similar to each other, and isosceles triangles are not all similar to each other. This is because two ellipses can have different width to height ratios, two rectangles can have different length to breadth ratios, and two isosceles triangles can have different ...

  3. Dividing a square into similar rectangles - Wikipedia

    en.wikipedia.org/wiki/Dividing_a_square_into...

    The solution in which the three rectangles are all of different sizes and where they have aspect ratio ρ 2, where ρ is the plastic ratio. The fact that a rectangle of aspect ratio ρ 2 can be used for dissections of a square into similar rectangles is equivalent to an algebraic property of the number ρ 2 related to the Routh–Hurwitz ...

  4. Rectangle - Wikipedia

    en.wikipedia.org/wiki/Rectangle

    A rectangle tiled by squares, rectangles, or triangles is said to be a "squared", "rectangled", or "triangulated" (or "triangled") rectangle respectively. The tiled rectangle is perfect [17] [18] if the tiles are similar and finite in number and no two tiles are the same size. If two such tiles are the same size, the tiling is imperfect.

  5. Missing square puzzle - Wikipedia

    en.wikipedia.org/wiki/Missing_square_puzzle

    The apparent paradox is explained by the fact that the side of the new large square is a little smaller than the original one. If θ is the angle between two opposing sides in each quadrilateral, then the ratio of the two areas is given by sec 2 θ. For θ = 5°, this is approximately 1.00765, which corresponds to a difference of about 0.8%.

  6. List of two-dimensional geometric shapes - Wikipedia

    en.wikipedia.org/wiki/List_of_two-dimensional...

    This is a list of two-dimensional geometric shapes in Euclidean and other geometries. For mathematical objects in more dimensions, see list of mathematical shapes. For a broader scope, see list of shapes.

  7. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    These two triangles are shown to be congruent, proving this square has the same area as the left rectangle. This argument is followed by a similar version for the right rectangle and the remaining square. Putting the two rectangles together to reform the square on the hypotenuse, its area is the same as the sum of the area of the other two squares.

  8. Congruence (geometry) - Wikipedia

    en.wikipedia.org/wiki/Congruence_(geometry)

    The two triangles on the left are congruent. The third is similar to them. The last triangle is neither congruent nor similar to any of the others. Congruence permits alteration of some properties, such as location and orientation, but leaves others unchanged, like distances and angles.

  9. Homothetic center - Wikipedia

    en.wikipedia.org/wiki/Homothetic_center

    Figure 1: The point O is an external homothetic center for the two triangles. The size of each figure is proportional to its distance from the homothetic center. In geometry, a homothetic center (also called a center of similarity or a center of similitude) is a point from which at least two geometrically similar figures can be seen as a dilation or contraction of one another.