When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    It can only be used to draw a line segment between two points, or to extend an existing line segment. The compass can have an arbitrarily large radius with no markings on it (unlike certain real-world compasses). Circles and circular arcs can be drawn starting from two given points: the centre and a point on the circle. The compass may or may ...

  3. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    The sphere's radius is taken as unity. For specific practical problems on a sphere of radius R the measured lengths of the sides must be divided by R before using the identities given below. Likewise, after a calculation on the unit sphere the sides a, b, and c must be multiplied by R.

  4. Lists of uniform tilings on the sphere, plane, and hyperbolic ...

    en.wikipedia.org/wiki/Lists_of_uniform_tilings...

    In geometry, many uniform tilings on sphere, euclidean plane, and hyperbolic plane can be made by Wythoff construction within a fundamental triangle, (p q r), defined by internal angles as π/p, π/q, and π/r.

  5. Spherical geometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_geometry

    Since spherical geometry violates the parallel postulate, there exists no such triangle on the surface of a sphere. The sum of the angles of a triangle on a sphere is 180°(1 + 4f), where f is the fraction of the sphere's surface that is enclosed by the triangle.

  6. Midsphere - Wikipedia

    en.wikipedia.org/wiki/Midsphere

    Any two convex polyhedra with the same face lattice and the same midsphere can be transformed into each other by a projective transformation of three-dimensional space that leaves the midsphere in the same position. This transformation leaves the sphere in place, but moves points within the sphere according to a Möbius transformation. [15]

  7. Spherical polyhedron - Wikipedia

    en.wikipedia.org/wiki/Spherical_polyhedron

    In geometry, a spherical polyhedron or spherical tiling is a tiling of the sphere in which the surface is divided or partitioned by great arcs into bounded regions called spherical polygons. A polyhedron whose vertices are equidistant from its center can be conveniently studied by projecting its edges onto the sphere to obtain a corresponding ...

  8. Squaring the circle - Wikipedia

    en.wikipedia.org/wiki/Squaring_the_circle

    Squaring the circle is a problem in geometry first proposed in Greek mathematics.It is the challenge of constructing a square with the area of a given circle by using only a finite number of steps with a compass and straightedge.

  9. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...