When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    This equation is called the canonical form of a hyperbola, because any hyperbola, regardless of its orientation relative to the Cartesian axes and regardless of the location of its center, can be transformed to this form by a change of variables, giving a hyperbola that is congruent to the original (see below).

  3. Hyperbolic sector - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_sector

    A hyperbolic sector is a region of the Cartesian plane bounded by a hyperbola and two rays from the origin to it. For example, the two points (a, 1/a) and (b, 1/b) on the rectangular hyperbola xy = 1, or the corresponding region when this hyperbola is re-scaled and its orientation is altered by a rotation leaving the center at the origin, as with the unit hyperbola.

  4. Hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_functions

    A ray through the unit hyperbola x 2 − y 2 = 1 at the point (cosh a, sinh a), where a is twice the area between the ray, the hyperbola, and the x-axis. For points on the hyperbola below the x-axis, the area is considered negative (see animated version with comparison with the trigonometric (circular) functions).

  5. Hyperbolic partial differential equation - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_partial...

    In mathematics, a hyperbolic partial differential equation of order is a partial differential equation (PDE) that, roughly speaking, has a well-posed initial value problem for the first derivatives. [ citation needed ] More precisely, the Cauchy problem can be locally solved for arbitrary initial data along any non-characteristic hypersurface .

  6. Semi-major and semi-minor axes - Wikipedia

    en.wikipedia.org/wiki/Semi-major_and_semi-minor_axes

    The semi-minor axis (minor semiaxis) of an ellipse or hyperbola is a line segment that is at right angles with the semi-major axis and has one end at the center of the conic section. For the special case of a circle, the lengths of the semi-axes are both equal to the radius of the circle.

  7. Pell's equation - Wikipedia

    en.wikipedia.org/wiki/Pell's_equation

    Pell's equation, also called the Pell–Fermat equation, is any Diophantine equation of the form =, where n is a given positive nonsquare integer, and integer solutions are sought for x and y. In Cartesian coordinates , the equation is represented by a hyperbola ; solutions occur wherever the curve passes through a point whose x and y ...

  8. Hyperbolic motion (relativity) - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_motion_(relativity)

    Each hyperbola is defined by = / and = / (with =, =) in equation . Hyperbolic motion is the motion of an object with constant proper acceleration in special relativity . It is called hyperbolic motion because the equation describing the path of the object through spacetime is a hyperbola , as can be seen when graphed on a Minkowski diagram ...

  9. Confocal conic sections - Wikipedia

    en.wikipedia.org/wiki/Confocal_conic_sections

    When 0 < a < c the conic is a hyperbola; when c < a the conic is an ellipse. Each ellipse or hyperbola in the pencil is the locus of points satisfying the equation + = with semi-major axis as parameter.