Search results
Results From The WOW.Com Content Network
In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval [0, 1] or (0, 1) in terms of two positive parameters, denoted by alpha (α) and beta (β), that appear as exponents of the variable and its complement to 1, respectively, and control the shape of the distribution.
The beta-binomial distribution is the binomial distribution in which the probability of success at each of n trials is not fixed but randomly drawn from a beta distribution. It is frequently used in Bayesian statistics, empirical Bayes methods and classical statistics to capture overdispersion in binomial type distributed data.
The regularized incomplete beta function is the cumulative distribution function of the beta distribution, and is related to the cumulative distribution function (;,) of a random variable X following a binomial distribution with probability of single success p and number of Bernoulli trials n:
Some distributions have been specially named as compounds: beta-binomial distribution, Beta negative binomial distribution, gamma-normal distribution. Examples: If X is a Binomial(n,p) random variable, and parameter p is a random variable with beta(α, β) distribution, then X is distributed as a Beta-Binomial(α,β,n).
It is a multivariate generalization of the beta distribution, [1] hence its alternative name of multivariate beta distribution (MBD). [2] Dirichlet distributions are commonly used as prior distributions in Bayesian statistics , and in fact, the Dirichlet distribution is the conjugate prior of the categorical distribution and multinomial ...
The beta family includes the beta of the first and second kind [7] (B1 and B2, where the B2 is also referred to as the Beta prime), which correspond to c = 0 and c = 1, respectively. Setting c = 0 {\displaystyle c=0} , b = 1 {\displaystyle b=1} yields the standard two-parameter beta distribution .
Beta regression is a form of regression which is used when the response variable, , takes values within (,) and can be assumed to follow a beta distribution. [1] It is generalisable to variables which takes values in the arbitrary open interval ( a , b ) {\displaystyle (a,b)} through transformations. [ 1 ]
In probability theory and statistics, the beta prime distribution (also known as inverted beta distribution or beta distribution of the second kind [1]) is an absolutely continuous probability distribution. If [,] has a beta distribution, then the odds has a beta prime distribution.