Search results
Results From The WOW.Com Content Network
In probability theory and statistics, the beta prime distribution (also known as inverted beta distribution or beta distribution of the second kind [1]) is an absolutely continuous probability distribution. If [,] has a beta distribution, then the odds has a beta prime distribution.
The formulation of the beta distribution discussed here is also known as the beta distribution of the first kind, whereas beta distribution of the second kind is an alternative name for the beta prime distribution. The generalization to multiple variables is called a Dirichlet distribution.
The beta family includes the beta of the first and second kind [7] (B1 and B2, where the B2 is also referred to as the Beta prime), which correspond to c = 0 and c = 1, respectively. Setting =, = yields the standard two-parameter beta distribution.
The uniform distribution or rectangular distribution on [a,b], where all points in a finite interval are equally likely, is a special case of the four-parameter Beta distribution. The Irwin–Hall distribution is the distribution of the sum of n independent random variables, each of which having the uniform distribution on [0,1].
The F-distribution is a particular parametrization of the beta prime distribution, which is also called the beta distribution of the second kind. The characteristic function is listed incorrectly in many standard references (e.g., [3]). The correct expression [7] is
Some distributions have been specially named as compounds: beta-binomial distribution, Beta negative binomial distribution, gamma-normal distribution. Examples: If X is a Binomial(n,p) random variable, and parameter p is a random variable with beta(α, β) distribution, then X is distributed as a Beta-Binomial(α,β,n).
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The regularized incomplete beta function is the cumulative distribution function of the beta distribution, and is related to the cumulative distribution function (;,) of a random variable X following a binomial distribution with probability of single success p and number of Bernoulli trials n: