When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Feature scaling - Wikipedia

    en.wikipedia.org/wiki/Feature_scaling

    Also known as min-max scaling or min-max normalization, rescaling is the simplest method and consists in rescaling the range of features to scale the range in [0, 1] or [−1, 1]. Selecting the target range depends on the nature of the data. The general formula for a min-max of [0, 1] is given as: [3]

  3. Non-negative matrix factorization - Wikipedia

    en.wikipedia.org/wiki/Non-negative_matrix...

    A column in the coefficients matrix H represents an original document with a cell value defining the document's rank for a feature. We can now reconstruct a document (column vector) from our input matrix by a linear combination of our features (column vectors in W ) where each feature is weighted by the feature's cell value from the document's ...

  4. Microsoft Excel - Wikipedia

    en.wikipedia.org/wiki/Microsoft_Excel

    Microsoft Excel is a spreadsheet editor developed by Microsoft for Windows, macOS, Android, iOS and iPadOS.It features calculation or computation capabilities, graphing tools, pivot tables, and a macro programming language called Visual Basic for Applications (VBA).

  5. Kalman filter - Wikipedia

    en.wikipedia.org/wiki/Kalman_filter

    Kalman filtering uses a system's dynamic model (e.g., physical laws of motion), known control inputs to that system, and multiple sequential measurements (such as from sensors) to form an estimate of the system's varying quantities (its state) that is better than the estimate obtained by using only one measurement alone.

  6. Successive over-relaxation - Wikipedia

    en.wikipedia.org/wiki/Successive_over-relaxation

    A simple Python implementation of the pseudo-code provided above. import numpy as np from scipy import linalg def sor_solver ( A , b , omega , initial_guess , convergence_criteria ): """ This is an implementation of the pseudo-code provided in the Wikipedia article.

  7. Deep learning - Wikipedia

    en.wikipedia.org/wiki/Deep_learning

    Deep learning is a subset of machine learning that focuses on utilizing neural networks to perform tasks such as classification, regression, and representation learning.The field takes inspiration from biological neuroscience and is centered around stacking artificial neurons into layers and "training" them to process data.

  8. Iris flower data set - Wikipedia

    en.wikipedia.org/wiki/Iris_flower_data_set

    The iris data set is widely used as a beginner's dataset for machine learning purposes. The dataset is included in R base and Python in the machine learning library scikit-learn, so that users can access it without having to find a source for it. Several versions of the dataset have been published. [8]

  9. Range tree - Wikipedia

    en.wikipedia.org/wiki/Range_tree

    A 1-dimensional range tree on a set of n points is a binary search tree, which can be constructed in (⁡) time. Range trees in higher dimensions are constructed recursively by constructing a balanced binary search tree on the first coordinate of the points, and then, for each vertex v in this tree, constructing a (d−1)-dimensional range tree on the points contained in the subtree of v.

  1. Related searches apply minmaxscaler to multiple columns range in python program pdf document

    min max scaling datamin max scaling formula