Search results
Results From The WOW.Com Content Network
An ampere-hour or amp-hour (symbol: A⋅h or A h; often simplified as Ah) is a unit of electric charge, having dimensions of electric current multiplied by time, equal to the charge transferred by a steady current of one ampere flowing for one hour, or 3,600 coulombs. [1][2] The commonly seen milliampere-hour (symbol: mA⋅h, mA h, often ...
One kilowatt-hour per year equals about 114.08 milliwatts applied constantly during one year. The energy content of a battery is usually expressed indirectly by its capacity in ampere-hours; to convert ampere-hour (Ah) to watt-hours (Wh), the ampere-hour value must be multiplied by the voltage of the power source. This value is approximate ...
For example, when a light bulb with a power rating of 100 W is turned on for one hour, the energy used is 100 watt hours (W·h), 0.1 kilowatt hour, or 360 kJ. This same amount of energy would light a 40-watt bulb for 2.5 hours, or a 50-watt bulb for 2 hours.
DC meters often measured charge in ampere hours. Since the voltage of the supply should remain substantially constant, the reading of the meter was proportional to actual energy consumed. For example, if a meter recorded that 100 ampere hours had been consumed on a 200-volt supply, then 20 kilowatt-hours of energy had been supplied. A 'Reason ...
Atomic units. ≈ 6.241 509 × 1018 e. The coulomb (symbol: C) is the unit of electric charge in the International System of Units (SI). [1][2] It is equal to the electric charge delivered by a 1 ampere current in 1 second and is defined in terms of the elementary charge e, at about 6.241 509 × 1018 e. [2][1]
Electric power is the rate of transfer of electrical energy within a circuit.Its SI unit is the watt, the general unit of power, defined as one joule per second.Standard prefixes apply to watts as with other SI units: thousands, millions and billions of watts are called kilowatts, megawatts and gigawatts respectively.
For reference, about 10,000 100-watt lightbulbs or 5,000 computer systems would be needed to draw 1 MW. Also, 1 MW is approximately 1360 horsepower. Modern high-power diesel-electric locomotives typically have a peak power of 3–5 MW, while a typical modern nuclear power plant produces on the order of 500–2000 MW peak output.
Using the above example, if a battery rated for 100 ampere-hours at a 20-hour rate has a Peukert constant of 1.2 and is discharged at a rate of 10 amperes, it would be fully discharged in time (), which is approximately 8.7 hours. It would therefore deliver only 87 ampere-hours rather than 100.