When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Integral of the secant function - Wikipedia

    en.wikipedia.org/wiki/Integral_of_the_secant...

    The integral of the secant function was historically one of the first integrals of its type ever evaluated, before most of the development of integral calculus. It is important because it is the vertical coordinate of the Mercator projection , used for marine navigation with constant compass bearing .

  3. Integral of secant cubed - Wikipedia

    en.wikipedia.org/wiki/Integral_of_secant_cubed

    The integral of secant cubed is a frequent and challenging [1] indefinite integral of elementary calculus: ⁡ = ⁡ ⁡ + ⁡ + = (⁡ ⁡ + ⁡ | ⁡ + ⁡ |) + = (⁡ ⁡ + ⁡) +, | | < where is the inverse Gudermannian function, the integral of the secant function.

  4. List of integrals of hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    3.1 Integrals of hyperbolic tangent, cotangent, secant, cosecant functions. ... For a complete list of integral functions, see list of integrals.

  5. List of integrals of inverse trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    For a complete list of integral formulas, see lists of integrals. The inverse trigonometric functions are also known as the "arc functions". C is used for the arbitrary constant of integration that can only be determined if something about the value of the integral at some point is known. Thus each function has an infinite number of ...

  6. List of integrals of trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    For a complete list of antiderivative functions, see Lists of integrals. For the special antiderivatives involving trigonometric functions, see Trigonometric integral. [1] Generally, if the function ⁡ is any trigonometric function, and ⁡ is its derivative,

  7. Lists of integrals - Wikipedia

    en.wikipedia.org/wiki/Lists_of_integrals

    If the function f does not have any continuous antiderivative which takes the value zero at the zeros of f (this is the case for the sine and the cosine functions), then sgn(f(x)) ∫ f(x) dx is an antiderivative of f on every interval on which f is not zero, but may be discontinuous at the points where f(x) = 0.

  8. Inverse trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Inverse_trigonometric...

    Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, [4] and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering , navigation , physics , and geometry .

  9. Trigonometric substitution - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_substitution

    For a definite integral, the bounds change once the substitution is performed and are determined using the equation = ⁡, with values in the range < <. Alternatively, apply the boundary terms directly to the formula for the antiderivative.