Search results
Results From The WOW.Com Content Network
To apply a Q test for bad data, arrange the data in order of increasing values and calculate Q as defined: Q = gap range {\displaystyle Q={\frac {\text{gap}}{\text{range}}}} Where gap is the absolute difference between the outlier in question and the closest number to it.
The user answers a list of questions which calibrate the historical data to yield a software reliability prediction. The accuracy of the prediction depends on how many parameters (questions) and datasets are in the model, how current the data is, and how confident the user is of their inputs.
For reliability testing, data is gathered from various stages of development, such as the design and operating stages. The tests are limited due to restrictions such as cost and time restrictions. Statistical samples are obtained from the software products to test for the reliability of the software.
The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4] The parameters used are:
The name of this formula stems from the fact that is the twentieth formula discussed in Kuder and Richardson's seminal paper on test reliability. [1] It is a special case of Cronbach's α, computed for dichotomous scores. [2] [3] It is often claimed that a high KR-20 coefficient (e.g., > 0.90) indicates a homogeneous test. However, like ...
For example, AFR is used to characterize the reliability of hard disk drives.. The relationship between AFR and MTBF (in hours) is: [1] = (/) This equation assumes that the device or component is powered on for the full 8766 hours of a year, and gives the estimated fraction of an original sample of devices or components that will fail in one year, or, equivalently, 1 − AFR is the fraction of ...
The survival function is one of several ways to describe and display survival data. Another useful way to display data is a graph showing the distribution of survival times of subjects. Olkin, [5] page 426, gives the following example of survival data. The number of hours between successive failures of an air-conditioning (AC) system were recorded.
The concordance correlation coefficient is nearly identical to some of the measures called intra-class correlations.Comparisons of the concordance correlation coefficient with an "ordinary" intraclass correlation on different data sets found only small differences between the two correlations, in one case on the third decimal. [2]