Ads
related to: definition of opposite in math geometry
Search results
Results From The WOW.Com Content Network
In mathematics, two points of a sphere (or n-sphere, including a circle) are called antipodal or diametrically opposite if they are the endpoints of a diameter, a straight line segment between two points on a sphere and passing through its center.
In mathematics, sine and cosine are trigonometric functions of an angle.The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to that ...
Used paired with ±, denotes the opposite sign; that is, + if ± is –, and – if ± is +. ÷ (division sign) Widely used for denoting division in Anglophone countries, it is no longer in common use in mathematics and its use is "not recommended". [1] In some countries, it can indicate subtraction.: 1.
In Euclidean geometry, a parallelogram is a simple (non-self-intersecting) quadrilateral with two pairs of parallel sides. The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equal measure.
A reflection in a line is an opposite isometry, like R 1 or R 2 on the image. Translation T is a direct isometry: a rigid motion. [1] In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective.
The relationship between opposites is known as opposition. A member of a pair of opposites can generally be determined by the question What is the opposite of X ? The term antonym (and the related antonymy) is commonly taken to be synonymous with opposite, but antonym also has other more restricted meanings. Graded (or gradable) antonyms are ...
In geometry, a transversal is a line that passes through two lines in the same plane at two distinct points. ... called the opposite regulus, R o. In this space ...
In geometry, two lines and are antiparallel with respect to a given line if they each make congruent angles with in opposite senses.More generally, lines and are antiparallel with respect to another pair of lines and if they are antiparallel with respect to the angle bisector of and .