Search results
Results From The WOW.Com Content Network
Using a few basic rules, the root locus method can plot the overall shape of the path (locus) traversed by the roots as the value of varies. The plot of the root locus then gives an idea of the stability and dynamics of this feedback system for different values of . [12] [13] The rules are the following:
The Nyquist plot for () = + + with s = jω.. In control theory and stability theory, the Nyquist stability criterion or Strecker–Nyquist stability criterion, independently discovered by the German electrical engineer Felix Strecker [] at Siemens in 1930 [1] [2] [3] and the Swedish-American electrical engineer Harry Nyquist at Bell Telephone Laboratories in 1932, [4] is a graphical technique ...
Bode plot, Nyquist stability criterion, Nichols plot, and root locus are the usual tools for SISO system analysis. Controllers can be designed through the polynomial design, root locus design methods to name just two of the more popular. Often SISO controllers will be PI, PID, or lead-lag.
Tools include the root locus, the Nyquist stability criterion, the Bode plot, the gain margin and phase margin. More advanced tools include Bode integrals to assess performance limitations and trade-offs, and describing functions to analyze nonlinearities in the frequency domain.
In root-locus design, the gain K is usually parameterized. Each point on the locus satisfies the angle condition and magnitude condition and corresponds to a different value of K. For negative feedback systems, the closed-loop poles move along the root-locus from the open-loop poles to the open-loop zeroes as the gain is increased
A tabular method can be used to determine the stability when the roots of a higher order characteristic polynomial are difficult to obtain. For an n th-degree polynomial whose all coefficients are the same signs D ( s ) = a n s n + a n − 1 s n − 1 + ⋯ + a 1 s + a 0 {\displaystyle D(s)=a_{n}s^{n}+a_{n-1}s^{n-1}+\cdots +a_{1}s+a_{0}} the ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Bode plot illustrating phase margin. In electronic amplifiers, the phase margin (PM) is the difference between the phase lag φ (< 0) and -180°, for an amplifier's output signal (relative to its input) at zero dB gain - i.e. unity gain, or that the output signal has the same amplitude as the input.