When.com Web Search

  1. Ad

    related to: conditional expectation examples in class 5 geometry ncert book

Search results

  1. Results From The WOW.Com Content Network
  2. Conditional expectation - Wikipedia

    en.wikipedia.org/wiki/Conditional_expectation

    In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value evaluated with respect to the conditional probability distribution. If the random variable can take on only a finite number of values, the "conditions" are that the variable can only take on a subset of ...

  3. Martingale (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Martingale_(probability...

    In probability theory, a martingale is a sequence of random variables (i.e., a stochastic process) for which, at a particular time, the conditional expectation of the next value in the sequence is equal to the present value, regardless of all prior values. Stopped Brownian motion is an example of a martingale. It can model an even coin-toss ...

  4. Conditioning (probability) - Wikipedia

    en.wikipedia.org/wiki/Conditioning_(probability)

    The value x = 0.5 is an atom of the distribution of X, thus, the corresponding conditional distribution is well-defined and may be calculated by elementary means (the denominator does not vanish); the conditional distribution of Y given X = 0.5 is uniform on (2/3, 1). Measure theory leads to the same result.

  5. Doob's martingale convergence theorems - Wikipedia

    en.wikipedia.org/wiki/Doob's_martingale...

    Then the sequence converges almost surely to a random variable with finite expectation. There is a symmetric statement for submartingales with bounded expectation of the positive part. A supermartingale is a stochastic analogue of a non-increasing sequence, and the condition of the theorem is analogous to the condition in the monotone ...

  6. Method of conditional probabilities - Wikipedia

    en.wikipedia.org/wiki/Method_of_conditional...

    To do this, instead of computing the conditional probability of failure, the algorithm computes the conditional expectation of Q and proceeds accordingly: at each interior node, there is some child whose conditional expectation is at most (at least) the node's conditional expectation; the algorithm moves from the current node to such a child ...

  7. Bayes' theorem - Wikipedia

    en.wikipedia.org/wiki/Bayes'_theorem

    Existence and uniqueness of the needed conditional expectation is a consequence of the Radon–Nikodym theorem. This was formulated by Kolmogorov in 1933. Kolmogorov underlines the importance of conditional probability, writing, "I wish to call attention to ... the theory of conditional probabilities and conditional expectations". [18]

  8. Kernel regression - Wikipedia

    en.wikipedia.org/wiki/Kernel_regression

    In statistics, kernel regression is a non-parametric technique to estimate the conditional expectation of a random variable.The objective is to find a non-linear relation between a pair of random variables X and Y.

  9. Minimum mean square error - Wikipedia

    en.wikipedia.org/wiki/Minimum_mean_square_error

    Thus, we postulate that the conditional expectation of given is a simple linear function of , ⁡ {} = +, where the measurement is a random vector, is a matrix and is a vector. This can be seen as the first order Taylor approximation of E ⁡ { x ∣ y } {\displaystyle \operatorname {E} \{x\mid y\}} .