Search results
Results From The WOW.Com Content Network
The curved surface area of the spherical segment bounded by two parallel disks is the difference of surface areas of their respective spherical caps. For a sphere of radius r {\displaystyle r} , and caps with heights h 1 {\displaystyle h_{1}} and h 2 {\displaystyle h_{2}} , the area is
The external surface area A of the cap equals r2 only if solid angle of the cone is exactly 1 steradian. Hence, in this figure θ = A/2 and r = 1. The solid angle of a cone with its apex at the apex of the solid angle, and with apex angle 2 θ, is the area of a spherical cap on a unit sphere
In geometry, a spherical sector, [1] also known as a spherical cone, [2] is a portion of a sphere or of a ball defined by a conical boundary with apex at the center of the sphere. It can be described as the union of a spherical cap and the cone formed by the center of the sphere and the base of the cap.
In geometry, a spherical segment is the solid defined by cutting a sphere or a ball with a pair of parallel planes. It can be thought of as a spherical cap with the top truncated, and so it corresponds to a spherical frustum. The surface of the spherical segment (excluding the bases) is called spherical zone. Geometric parameters for spherical ...
A solid angle in the form of a right circular cone can be projected onto a sphere, defining a spherical cap where the cone intersects the sphere. The magnitude of the solid angle expressed in steradians is defined as the quotient of the surface area of the spherical cap and the square of the sphere's radius.
A sphere of radius r has surface area 4πr 2.. The surface area (symbol A) of a solid object is a measure of the total area that the surface of the object occupies. [1] The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of arc length of one-dimensional curves, or of the surface area for polyhedra (i.e., objects with ...
For any natural number , an -sphere of radius is defined as the set of points in (+) -dimensional Euclidean space that are at distance from some fixed point , where may be any positive real number and where may be any point in (+) -dimensional space.
If we use the same method that Archimedes used to find the surface area of a sphere (a sum of thin strips), we can calculate the surface area of the spherical cap directly. Then we can reason to the volume using the method given on the main page by subtracting the volume of a cone.