Search results
Results From The WOW.Com Content Network
A number that is not part of any friendly pair is called solitary. The abundancy index of n is the rational number σ(n) / n, in which σ denotes the sum of divisors function. A number n is a friendly number if there exists m ≠ n such that σ(m) / m = σ(n) / n. Abundancy is not the same as abundance, which is defined as σ(n) − 2n.
Hasse diagram of the natural numbers, partially ordered by "x≤y if x divides y".The numbers 4 and 6 are incomparable, since neither divides the other. In mathematics, two elements x and y of a set P are said to be comparable with respect to a binary relation ≤ if at least one of x ≤ y or y ≤ x is true.
The computable numbers include the specific real numbers which appear in practice, including all real algebraic numbers, as well as e, π, and many other transcendental numbers. Though the computable reals exhaust those reals we can calculate or approximate, the assumption that all reals are computable leads to substantially different ...
Turing's proof, although it seems to use the "diagonal process", in fact shows that his machine (called H) cannot calculate its own number, let alone the entire diagonal number (Cantor's diagonal argument): "The fallacy in the argument lies in the assumption that B [the diagonal number] is computable" [3] The proof does not require much ...
The Drake equation is a probabilistic argument used to estimate the number of active, communicative extraterrestrial civilizations in the Milky Way Galaxy. [ 1 ] [ 2 ] [ 3 ] The equation was formulated in 1961 by Frank Drake , not for purposes of quantifying the number of civilizations, but as a way to stimulate scientific dialogue at the first ...
In words: the first two numbers in the sequence are both 2, and each successive number is formed by adding twice the previous Pell–Lucas number to the Pell–Lucas number before that, or equivalently, by adding the next Pell number to the previous Pell number: thus, 82 is the companion to 29, and 82 = 2 × 34 + 14 = 70 + 12.
In mathematics, and in particular in combinatorics, the combinatorial number system of degree k (for some positive integer k), also referred to as combinadics, or the Macaulay representation of an integer, is a correspondence between natural numbers (taken to include 0) N and k-combinations.
Because the set of primes is a computably enumerable set, by Matiyasevich's theorem, it can be obtained from a system of Diophantine equations. Jones et al. (1976) found an explicit set of 14 Diophantine equations in 26 variables, such that a given number k + 2 is prime if and only if that system has a solution in nonnegative integers: [7]