When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Newton's theorem of revolving orbits - Wikipedia

    en.wikipedia.org/wiki/Newton's_theorem_of...

    Newton proposed that the orbits of planets about the Sun are largely elliptical because the Sun's gravitation is dominant; to first approximation, the presence of the other planets can be ignored. By analogy, the elliptical orbit of the Moon about the Earth was dominated by the Earth's gravity; to first approximation, the Sun's gravity and ...

  3. Elongation (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Elongation_(astronomy)

    This diagram shows various possible elongations (ε), each of which is the angular distance between a planet and the Sun from Earth's perspective. In astronomy, a planet's elongation is the angular separation between the Sun and the planet, with Earth as the reference point. [1] The greatest elongation is the maximum angular separation.

  4. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    The accuracy of this calculation requires that the two dates chosen be along the elliptical orbit's minor axis and that the midpoints of each half be along the major axis. As the two dates chosen here are equinoxes, this will be correct when perihelion, the date the Earth is closest to the Sun, falls on a solstice. The current perihelion, near ...

  5. Astronomical unit - Wikipedia

    en.wikipedia.org/wiki/Astronomical_unit

    This is because the distance between Earth and the Sun is not fixed (it varies between 0.983 289 8912 and 1.016 710 3335 au) and, when Earth is closer to the Sun , the Sun's gravitational field is stronger and Earth is moving faster along its orbital path. As the metre is defined in terms of the second and the speed of light is constant for all ...

  6. Solar zenith angle - Wikipedia

    en.wikipedia.org/wiki/Solar_zenith_angle

    The solar zenith angle is the zenith angle of the sun, i.e., the angle between the sun’s rays and the vertical direction.It is the complement to the solar altitude or solar elevation, which is the altitude angle or elevation angle between the sun’s rays and a horizontal plane.

  7. Astronomical coordinate systems - Wikipedia

    en.wikipedia.org/wiki/Astronomical_coordinate...

    The horizontal, or altitude-azimuth, system is based on the position of the observer on Earth, which revolves around its own axis once per sidereal day (23 hours, 56 minutes and 4.091 seconds) in relation to the star background. The positioning of a celestial object by the horizontal system varies with time, but is a useful coordinate system ...

  8. Solar time - Wikipedia

    en.wikipedia.org/wiki/Solar_time

    On a prograde planet like the Earth, the sidereal day is shorter than the solar day. At time 1, the Sun and a certain distant star are both overhead. At time 2, the planet has rotated 360° and the distant star is overhead again (1→2 = one sidereal day). But it is not until a little later, at time 3, that the Sun is overhead again (1→3 = one solar day). More simply, 1→2 is a complete ...

  9. Phase angle (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Phase_angle_(astronomy)

    With the development of space travel, as well as in hypothetical observations from other points in space, the notion of phase angle became independent of Sun and Earth. The etymology of the term is related to the notion of planetary phases, since the brightness of an object and its appearance as a "phase" is the function of the phase angle.