Ads
related to: riemannian manifold formulas pdf worksheet answers 1 7 13 3x42 p
Search results
Results From The WOW.Com Content Network
Let be a smooth manifold and let be a one-parameter family of Riemannian or pseudo-Riemannian metrics. Suppose that it is a differentiable family in the sense that for any smooth coordinate chart, the derivatives v i j = ∂ ∂ t ( ( g t ) i j ) {\displaystyle v_{ij}={\frac {\partial }{\partial t}}{\big (}(g_{t})_{ij}{\big )}} exist and are ...
In Riemannian geometry and pseudo-Riemannian geometry, the Gauss–Codazzi equations (also called the Gauss–Codazzi–Weingarten-Mainardi equations or Gauss–Peterson–Codazzi formulas [1]) are fundamental formulas that link together the induced metric and second fundamental form of a submanifold of (or immersion into) a Riemannian or pseudo-Riemannian manifold.
Riemannian manifolds are named after German mathematician Bernhard Riemann, who first conceptualized them. Formally, a Riemannian metric (or just a metric) on a smooth manifold is a choice of inner product for each tangent space of the manifold. A Riemannian manifold is a smooth manifold together with a Riemannian metric.
An extension of the fundamental theorem states that given a pseudo-Riemannian manifold there is a unique connection preserving the metric tensor, with any given vector-valued 2-form as its torsion. The difference between an arbitrary connection (with torsion) and the corresponding Levi-Civita connection is the contorsion tensor .
The Levi-Civita connection is named after Tullio Levi-Civita, although originally "discovered" by Elwin Bruno Christoffel.Levi-Civita, [1] along with Gregorio Ricci-Curbastro, used Christoffel's symbols [2] to define the notion of parallel transport and explore the relationship of parallel transport with the curvature, thus developing the modern notion of holonomy.
In the case of a Riemannian 2-manifold, the fundamental theorem of Riemannian geometry can be rephrased in terms of Cartan's canonical 1-forms: Theorem. On an oriented Riemannian 2-manifold M, there is a unique connection ω on the frame bundle satisfying
In differential geometry, Riemannian geometry is the study of smooth manifolds with Riemannian metrics; i.e. a choice of positive-definite quadratic form on a manifold's tangent spaces which varies smoothly from point to point. This gives in particular local ideas of angle, length of curves, and volume.
Let (,) be a complete and smooth Riemannian manifold of dimension n. If k is a positive number with Ric g ≥ ( n -1) k , and if there exists p and q in M with d g ( p , q ) = π / √ k , then ( M , g ) is simply-connected and has constant sectional curvature k .