When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euclidean vector - Wikipedia

    en.wikipedia.org/wiki/Euclidean_vector

    A vector pointing from A to B. In mathematics, physics, and engineering, a Euclidean vector or simply a vector (sometimes called a geometric vector [1] or spatial vector [2]) is a geometric object that has magnitude (or length) and direction. Euclidean vectors can be added and scaled to form a vector space.

  3. Cosine similarity - Wikipedia

    en.wikipedia.org/wiki/Cosine_similarity

    Using this technique each term in each vector is first divided by the magnitude of the vector, yielding a vector of unit length. Then the Euclidean distance over the end-points of any two vectors is a proper metric which gives the same ordering as the cosine distance (a monotonic transformation of Euclidean distance; see below) for any ...

  4. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    Euclidean vectors such as (2, 3, 4) or (a x, a y, a z) can be rewritten as 2 i + 3 j + 4 k or a x i + a y j + a z k, where i, j, k are unit vectors representing the three Cartesian axes (traditionally x, y, z), and also obey the multiplication rules of the fundamental quaternion units by interpreting the Euclidean vector (a x, a y, a z) as the ...

  5. Affine space - Wikipedia

    en.wikipedia.org/wiki/Affine_space

    Indeed, in most modern definitions, a Euclidean space is defined to be an affine space, such that the associated vector space is a real inner product space of finite dimension, that is a vector space over the reals with a positive-definite quadratic form q(x). The inner product of two vectors x and y is the value of the symmetric bilinear form

  6. Norm (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Norm_(mathematics)

    In particular, the Euclidean distance in a Euclidean space is defined by a norm on the associated Euclidean vector space, called the Euclidean norm, the 2-norm, or, sometimes, the magnitude or length of the vector. This norm can be defined as the square root of the inner product of a vector with itself.

  7. Euclidean space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_space

    A Euclidean vector space is a finite-dimensional inner product space over the real numbers. [6] A Euclidean space is an affine space over the reals such that the associated vector space is a Euclidean vector space. Euclidean spaces are sometimes called Euclidean affine spaces to distinguish them from Euclidean vector spaces. [6]

  8. Euclidean distance - Wikipedia

    en.wikipedia.org/wiki/Euclidean_distance

    It can be extended to infinite-dimensional vector spaces as the L 2 norm or L 2 distance. [25] The Euclidean distance gives Euclidean space the structure of a topological space, the Euclidean topology, with the open balls (subsets of points at less than a given distance from a given point) as its neighborhoods. [26]

  9. Lloyd's algorithm - Wikipedia

    en.wikipedia.org/wiki/Lloyd's_algorithm

    The Euclidean distance plays two roles in the algorithm: it is used to define the Voronoi cells, but it also corresponds to the choice of the centroid as the representative point of each cell, since the centroid is the point that minimizes the average squared Euclidean distance to the points in its cell.