Search results
Results From The WOW.Com Content Network
Pollard gives the time complexity of the algorithm as (), using a probabilistic argument based on the assumption that acts pseudorandomly. Since , can be represented using () bits, this is exponential in the problem size (though still a significant improvement over the trivial brute-force algorithm that takes time ()).
Pollard's rho algorithm for logarithms is an algorithm introduced by John Pollard in 1978 to solve the discrete logarithm problem, analogous to Pollard's rho algorithm to solve the integer factorization problem.
There are two other well known algorithms that solve the discrete logarithm problem in sub-exponential time: the index calculus algorithm and a version of the Number Field Sieve. [5] In their easiest forms both solve the DLP in a finite field of prime order but they can be expanded to solve the DLP in as well.
ECC2K-108, involving taking a discrete logarithm on a Koblitz curve over a field of 2 108 elements. The prize was awarded on 4 April 2000 to a group of about 1300 people represented by Robert Harley. They used a parallelized Pollard rho method with speedup. ECC2-109, involving taking a discrete logarithm on a curve over a field of 2 109 ...
In group theory, a branch of mathematics, the baby-step giant-step is a meet-in-the-middle algorithm for computing the discrete logarithm or order of an element in a finite abelian group by Daniel Shanks. [1] The discrete log problem is of fundamental importance to the area of public key cryptography.
This was considered a minor step compared to the others for smaller discrete log computations. However, larger discrete logarithm records [1] [2] were made possible only by shifting the work away from the linear algebra and onto the sieve (i.e., increasing the number of equations while reducing the number of variables).
Computing the discrete logarithm is the only known method for solving the CDH problem. But there is no proof that it is, in fact, the only method. It is an open problem to determine whether the discrete log assumption is equivalent to the CDH assumption, though in certain special cases this can be shown to be the case. [3] [4]
Discrete logarithms are quickly computable in a few special cases. However, no efficient method is known for computing them in general. In cryptography, the computational complexity of the discrete logarithm problem, along with its application, was first proposed in the Diffie–Hellman problem.