When.com Web Search

  1. Ad

    related to: how to calculate the tangent vector equation of two lines given x and n

Search results

  1. Results From The WOW.Com Content Network
  2. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    If = + is the distance from c 1 to c 2 we can normalize by =, =, = to simplify equation (1), resulting in the following system of equations: + =, + =; solve these to get two solutions (k = ±1) for the two external tangent lines: = = + = (+) Geometrically this corresponds to computing the angle formed by the tangent lines and the line of ...

  3. Tangent vector - Wikipedia

    en.wikipedia.org/wiki/Tangent_vector

    In mathematics, a tangent vector is a vector that is tangent to a curve or surface at a given point. Tangent vectors are described in the differential geometry of curves in the context of curves in R n. More generally, tangent vectors are elements of a tangent space of a differentiable manifold. Tangent vectors can also be described in terms of ...

  4. Tangential and normal components - Wikipedia

    en.wikipedia.org/wiki/Tangential_and_normal...

    In mathematics, given a vector at a point on a curve, that vector can be decomposed uniquely as a sum of two vectors, one tangent to the curve, called the tangential component of the vector, and another one perpendicular to the curve, called the normal component of the vector. Similarly, a vector at a point on a surface can be broken down the ...

  5. Frenet–Serret formulas - Wikipedia

    en.wikipedia.org/wiki/Frenet–Serret_formulas

    On the example of a torus knot, the tangent vector T, the normal vector N, and the binormal vector B, along with the curvature κ(s), and the torsion τ(s) are displayed. At the peaks of the torsion function the rotation of the Frenet–Serret frame ( T , N , B ) around the tangent vector is clearly visible.

  6. Envelope (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Envelope_(mathematics)

    A line is normal to γ at γ(t) if it passes through γ(t) and is perpendicular to the tangent vector to γ at γ(t). Let T denote the unit tangent vector to γ and let N denote the unit normal vector. Using a dot to denote the dot product, the generating family for the one-parameter family of normal lines is given by F : I × R 2 → R where

  7. Osculating circle - Wikipedia

    en.wikipedia.org/wiki/Osculating_circle

    Developing the equation for , and grouping the terms in and , we obtain ˙ + ˙ = ¨ + ¨ = ˙ + ˙ Denoting =, the first equation means that is orthogonal to the unit tangent vector at : = The second relation means that = where = = ˙ + ˙ [¨ ¨] is the curvature vector.

  8. Dual curve - Wikipedia

    en.wikipedia.org/wiki/Dual_curve

    Let Xx + Yy + Zz = 0 be the equation of a line, with (X, Y, Z) being designated its line coordinates in a dual projective plane. The condition that the line is tangent to the curve can be expressed in the form F(X, Y, Z) = 0 which is the tangential equation of the curve. At a point (p, q, r) on the curve, the tangent is given by

  9. First fundamental form - Wikipedia

    en.wikipedia.org/wiki/First_fundamental_form

    The Gaussian curvature of a surface is given by = =, where L, M, and N are the coefficients of the second fundamental form. Theorema egregium of Gauss states that the Gaussian curvature of a surface can be expressed solely in terms of the first fundamental form and its derivatives, so that K is in fact an intrinsic invariant of the surface.