Search results
Results From The WOW.Com Content Network
Pascal's original note [1] has no proof, but there are various modern proofs of the theorem. It is sufficient to prove the theorem when the conic is a circle, because any (non-degenerate) conic can be reduced to a circle by a projective transformation. This was realised by Pascal, whose first lemma states the theorem for a circle.
A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula. As formulas are entirely constituted with symbols of various types, many symbols are needed for ...
In geometry, Thales's theorem states that if A, B, and C are distinct points on a circle where the line AC is a diameter, the angle ∠ ABC is a right angle. Thales's theorem is a special case of the inscribed angle theorem and is mentioned and proved as part of the 31st proposition in the third book of Euclid 's Elements . [ 1 ]
The butterfly theorem is a classical result in Euclidean geometry, which can be stated as follows: [1]: p. 78 Let M be the midpoint of a chord PQ of a circle, through which two other chords AB and CD are drawn; AD and BC intersect chord PQ at X and Y correspondingly. Then M is the midpoint of XY.
Steiner used the power of a point for proofs of several statements on circles, for example: Determination of a circle, that intersects four circles by the same angle. [2] Solving the Problem of Apollonius; Construction of the Malfatti circles: [3] For a given triangle determine three circles, which touch each other and two sides of the triangle ...
List of mathematical functions; List of mathematical identities; List of mathematical proofs; List of misnamed theorems; List of scientific laws; List of theories; Most of the results below come from pure mathematics, but some are from theoretical physics, economics, and other applied fields.
Euler's identity is considered an exemplar of mathematical beauty, as it shows a profound connection between the most fundamental numbers in mathematics. In addition, it is directly used in a proof [ 3 ] [ 4 ] that π is transcendental , which implies the impossibility of squaring the circle .
A circle packing for a five-vertex planar graph. The circle packing theorem (also known as the Koebe–Andreev–Thurston theorem) describes the possible tangency relations between circles in the plane whose interiors are disjoint. A circle packing is a connected collection of circles (in general, on any Riemann surface) whose interiors are ...