Search results
Results From The WOW.Com Content Network
Algebra is the branch of mathematics that studies certain abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic operations other than the standard arithmetic operations, such as addition and multiplication.
Most contemporary reference works define mathematics by summarizing its main topics and methods: The abstract science which investigates deductively the conclusions implicit in the elementary conceptions of spatial and numerical relations, and which includes as its main divisions geometry, arithmetic, and algebra. [16] Oxford English Dictionary ...
The language of mathematics has a wide vocabulary of specialist and technical terms. It also has a certain amount of jargon: commonly used phrases which are part of the culture of mathematics, rather than of the subject.
This following list features abbreviated names of mathematical functions, function-like operators and other mathematical terminology. This list is limited to abbreviations of two or more letters (excluding number sets). The capitalization of some of these abbreviations is not standardized – different authors might use different capitalizations.
Mathematics is a broad subject that is commonly divided in many areas or branches that may be defined by their objects of study, by the used methods, or by both.For example, analytic number theory is a subarea of number theory devoted to the use of methods of analysis for the study of natural numbers.
The term algebra is derived from the Arabic word al-jabr meaning 'the reunion of broken parts' that he used for naming one of these methods in the title of his main treatise. [31] [32] Algebra became an area in its own right only with François Viète (1540–1603), who introduced the use of variables for representing unknown or unspecified ...
One of the axioms defining a group is the identity m(x, i(x)) = e; another is m(x,e) = x. The axioms can be represented as trees. These equations induce equivalence classes on the free algebra; the quotient algebra then has the algebraic structure of a group. Some structures do not form varieties, because either:
Therefore, in this article, the Unicode version of the symbols is used (when possible) for labelling their entry, and the LaTeX version is used in their description. So, for finding how to type a symbol in LaTeX, it suffices to look at the source of the article. For most symbols, the entry name is the corresponding Unicode symbol.