When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    However, some problems have distinct optimal solutions; for example, the problem of finding a feasible solution to a system of linear inequalities is a linear programming problem in which the objective function is the zero function (i.e., the constant function taking the value zero everywhere).

  3. Basic feasible solution - Wikipedia

    en.wikipedia.org/wiki/Basic_feasible_solution

    For example, if is non-basic and its coefficient in is positive, then increasing it above 0 may make larger. If it is possible to do so without violating other constraints, then the increased variable becomes basic (it "enters the basis"), while some basic variable is decreased to 0 to keep the equality constraints and thus becomes non-basic ...

  4. Basic solution (linear programming) - Wikipedia

    en.wikipedia.org/wiki/Basic_solution_(Linear...

    In linear programming, a discipline within applied mathematics, a basic solution is any solution of a linear programming problem satisfying certain specified technical conditions. For a polyhedron P {\displaystyle P} and a vector x ∗ ∈ R n {\displaystyle \mathbf {x} ^{*}\in \mathbb {R} ^{n}} , x ∗ {\displaystyle \mathbf {x} ^{*}} is a ...

  5. List of optimization software - Wikipedia

    en.wikipedia.org/wiki/List_of_optimization_software

    For example, the inputs could be design parameters for a motor, the output could be the power consumption. For another optimization, the inputs could be business choices and the output could be the profit obtained. An optimization problem, (in this case a minimization problem), can be represented in the following way:

  6. Interior-point method - Wikipedia

    en.wikipedia.org/wiki/Interior-point_method

    An interior point method was discovered by Soviet mathematician I. I. Dikin in 1967. [1] The method was reinvented in the U.S. in the mid-1980s. In 1984, Narendra Karmarkar developed a method for linear programming called Karmarkar's algorithm, [2] which runs in provably polynomial time (() operations on L-bit numbers, where n is the number of variables and constants), and is also very ...

  7. Covering problems - Wikipedia

    en.wikipedia.org/wiki/Covering_problems

    The most prominent examples of covering problems are the set cover problem, which is equivalent to the hitting set problem, and its special cases, the vertex cover problem and the edge cover problem. Covering problems allow the covering primitives to overlap; the process of covering something with non-overlapping primitives is called decomposition.

  8. LP-type problem - Wikipedia

    en.wikipedia.org/wiki/LP-type_problem

    Some geometric optimization problems may be expressed as LP-type problems in which the number of elements in the LP-type formulation is significantly greater than the number of input data values for the optimization problem. As an example, consider a collection of n points in the plane, each

  9. Karmarkar's algorithm - Wikipedia

    en.wikipedia.org/wiki/Karmarkar's_algorithm

    Karmarkar's algorithm is an algorithm introduced by Narendra Karmarkar in 1984 for solving linear programming problems. It was the first reasonably efficient algorithm that solves these problems in polynomial time. The ellipsoid method is also polynomial time but proved to be inefficient in practice.