When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    However, some problems have distinct optimal solutions; for example, the problem of finding a feasible solution to a system of linear inequalities is a linear programming problem in which the objective function is the zero function (i.e., the constant function taking the value zero everywhere).

  3. Basic feasible solution - Wikipedia

    en.wikipedia.org/wiki/Basic_feasible_solution

    For example, if is non-basic and its coefficient in is positive, then increasing it above 0 may make larger. If it is possible to do so without violating other constraints, then the increased variable becomes basic (it "enters the basis"), while some basic variable is decreased to 0 to keep the equality constraints and thus becomes non-basic ...

  4. Basic solution (linear programming) - Wikipedia

    en.wikipedia.org/wiki/Basic_solution_(Linear...

    In linear programming, a discipline within applied mathematics, a basic solution is any solution of a linear programming problem satisfying certain specified technical conditions. For a polyhedron P {\displaystyle P} and a vector x ∗ ∈ R n {\displaystyle \mathbf {x} ^{*}\in \mathbb {R} ^{n}} , x ∗ {\displaystyle \mathbf {x} ^{*}} is a ...

  5. Revised simplex method - Wikipedia

    en.wikipedia.org/wiki/Revised_simplex_method

    For the rest of the discussion, it is assumed that a linear programming problem has been converted into the following standard form: =, where A ∈ ℝ m×n.Without loss of generality, it is assumed that the constraint matrix A has full row rank and that the problem is feasible, i.e., there is at least one x ≥ 0 such that Ax = b.

  6. Simplex algorithm - Wikipedia

    en.wikipedia.org/wiki/Simplex_algorithm

    The storage and computation overhead is such that the standard simplex method is a prohibitively expensive approach to solving large linear programming problems. In each simplex iteration, the only data required are the first row of the tableau, the (pivotal) column of the tableau corresponding to the entering variable and the right-hand-side.

  7. Dual linear program - Wikipedia

    en.wikipedia.org/wiki/Dual_linear_program

    Given the LP "Maximize c T x subject to Ax ≤ b, x ≥ 0", we can construct another LP by combining this LP with its dual. The combined LP has both x and y as variables: Maximize 1. subject to Ax ≤ b, A T y ≥ c, c T x ≥ b T y, x ≥ 0, y ≥ 0. If the combined LP has a feasible solution (x,y), then by weak duality, c T x = b T y.

  8. Linear programming relaxation - Wikipedia

    en.wikipedia.org/wiki/Linear_programming_relaxation

    As a specific example of the set cover problem, consider the instance F = {{a, b}, {b, c}, {a, c}}. There are three optimal set covers, each of which includes two of the three given sets. Thus, the optimal value of the objective function of the corresponding 0–1 integer program is 2, the number of sets in the optimal covers.

  9. Karmarkar's algorithm - Wikipedia

    en.wikipedia.org/wiki/Karmarkar's_algorithm

    Karmarkar's algorithm is an algorithm introduced by Narendra Karmarkar in 1984 for solving linear programming problems. It was the first reasonably efficient algorithm that solves these problems in polynomial time. The ellipsoid method is also polynomial time but proved to be inefficient in practice.