Search results
Results From The WOW.Com Content Network
The table below shows some of the parameters of common superconductors. X:Y means material X doped with element Y, T C is the highest reported transition temperature in kelvins and H C is a critical magnetic field in tesla. "BCS" means whether or not the superconductivity is explained within the BCS theory.
A piece of cuprate of bismuth and strontium: this piece is a cube with an edge of nearly 1 mm. Bismuth strontium calcium copper oxide (BSCCO, pronounced bisko), is a type of cuprate superconductor having the generalized chemical formula Bi 2 Sr 2 Ca n−1 Cu n O 2n+4+x, with n = 2 being the most commonly studied compound (though n = 1 and n = 3 have also received significant attention).
The current sharing temperature T cs is the temperature at which the current transported through the superconductor also starts to flow through the stabilizer. [ 5 ] [ 6 ] However, T cs is not the same as the quench temperature (or critical temperature) T c ; in the former case, there is partial loss of superconductivity, while in the latter ...
Over time, researchers have consistently encountered superconductivity at temperatures previously considered unexpected or impossible, challenging the notion that achieving superconductivity at room temperature was infeasible. [4] [5] The concept of "near-room temperature" transient effects has been a subject of discussion since the early 1950s.
However, currently known high-temperature superconductors are brittle ceramics that are expensive to manufacture and not easily formed into wires or other useful shapes. [4] Therefore, the applications for HTS have been where it has some other intrinsic advantage, e.g. in: low thermal loss current leads for LTS devices (low thermal conductivity),
A substance with a high critical temperature will generally have a higher critical current at low temperature than a superconductor with a lower critical temperature. This higher critical current will raise the energy storage quadratically, which may make SMES and other industrial applications of superconductors cost-effective. [22]
An organic superconductor is a synthetic organic compound that exhibits superconductivity at low temperatures. As of 2007 the highest achieved critical temperature for an organic superconductor at standard pressure is 33 K (−240 °C; −400 °F), observed in the alkali-doped fullerene RbCs 2 C 60 .
High-temperature superconductors (HTS) become superconducting at more easily obtainable liquid nitrogen temperatures, which is much more economical than liquid helium that is typically used in low-temperature superconductors. HTS are ceramics, and are fragile relative to conventional metal alloy superconductors such as niobium-titanium.