When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Third derivative - Wikipedia

    en.wikipedia.org/wiki/Third_derivative

    In calculus, a branch of mathematics, the third derivative or third-order derivative is the rate at which the second derivative, or the rate of change of the rate of change, is changing. The third derivative of a function y = f ( x ) {\displaystyle y=f(x)} can be denoted by

  3. Notation for differentiation - Wikipedia

    en.wikipedia.org/wiki/Notation_for_differentiation

    for the third derivative, and for the nth derivative. D-notation leaves implicit the variable with respect to which differentiation is being done. However, this variable can also be made explicit by putting its name as a subscript: if f is a function of a variable x, this is done by writing [6]

  4. Related rates - Wikipedia

    en.wikipedia.org/wiki/Related_rates

    Differentiation with respect to time or one of the other variables requires application of the chain rule, [1] since most problems involve several variables. Fundamentally, if a function F {\displaystyle F} is defined such that F = f ( x ) {\displaystyle F=f(x)} , then the derivative of the function F {\displaystyle F} can be taken with respect ...

  5. Implicit function - Wikipedia

    en.wikipedia.org/wiki/Implicit_function

    In calculus, a method called implicit differentiation makes use of the chain rule to differentiate implicitly defined functions. To differentiate an implicit function y ( x ) , defined by an equation R ( x , y ) = 0 , it is not generally possible to solve it explicitly for y and then differentiate.

  6. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.

  7. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    Logarithmic differentiation is a technique which uses logarithms and its differentiation rules to simplify certain expressions before actually applying the derivative. [ citation needed ] Logarithms can be used to remove exponents, convert products into sums, and convert division into subtraction — each of which may lead to a simplified ...

  8. Chain rule - Wikipedia

    en.wikipedia.org/wiki/Chain_rule

    In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives of f and g.More precisely, if = is the function such that () = (()) for every x, then the chain rule is, in Lagrange's notation, ′ = ′ (()) ′ (). or, equivalently, ′ = ′ = (′) ′.

  9. Power rule - Wikipedia

    en.wikipedia.org/wiki/Power_rule

    In calculus, the power rule is used to differentiate functions of the form () =, whenever is a real number.Since differentiation is a linear operation on the space of differentiable functions, polynomials can also be differentiated using this rule.