Search results
Results From The WOW.Com Content Network
Often the independent variable is time. Described as a function, a quantity undergoing exponential growth is an exponential function of time, that is, the variable representing time is the exponent (in contrast to other types of growth, such as quadratic growth). Exponential growth is the inverse of logarithmic growth.
Functions of the form ae x for constant a are the only functions that are equal to their derivative (by the Picard–Lindelöf theorem). Other ways of saying the same thing include: The slope of the graph at any point is the height of the function at that point. The rate of increase of the function at x is equal to the value of the function at x.
The first-derivative test examines a function's monotonic properties (where the function is increasing or decreasing), focusing on a particular point in its domain.If the function "switches" from increasing to decreasing at the point, then the function will achieve a highest value at that point.
In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. [ 1 ] [ 2 ] [ 3 ] This concept first arose in calculus , and was later generalized to the more abstract setting of order theory .
In computability theory, computational complexity theory and proof theory, a fast-growing hierarchy (also called an extended Grzegorczyk hierarchy, or a Schwichtenberg-Wainer hierarchy) [1] is an ordinal-indexed family of rapidly increasing functions f α: N → N (where N is the set of natural numbers {0, 1, ...}, and α ranges up to some large countable ordinal).
In mathematics, a function from a set X to a set Y assigns to each element of X exactly one element of Y. [1] The set X is called the domain of the function [2] and the set Y is called the codomain of the function. [3] Functions were originally the idealization of how a varying quantity depends on another quantity.
The standard logistic function is the logistic function with parameters =, =, =, which yields = + = + = / / + /.In practice, due to the nature of the exponential function, it is often sufficient to compute the standard logistic function for over a small range of real numbers, such as a range contained in [−6, +6], as it quickly converges very close to its saturation values of 0 and 1.
The slow-growing hierarchy grows much more slowly than the fast-growing hierarchy. Even g ε 0 is only equivalent to f 3 and g α only attains the growth of f ε 0 (the first function that Peano arithmetic cannot prove total in the hierarchy) when α is the Bachmann–Howard ordinal.