Search results
Results From The WOW.Com Content Network
If the edges connecting bases are perpendicular to one of its bases, the prism is called a truncated right triangular prism. Given that A is the area of the triangular prism's base, and the three heights h 1, h 2, and h 3, its volume can be determined in the following formula: [14] (+ +).
This lateral surface area can be calculated by multiplying the perimeter of the base by the height of the prism. [2] For a right circular cylinder of radius r and height h, the lateral area is the area of the side surface of the cylinder: A = 2πrh. For a pyramid, the lateral surface area is the sum of the areas of all of the triangular faces ...
The surface area of a right prism is: +, where B is the area of the base, h the height, and P the base perimeter. The surface area of a right prism whose base is a regular n-sided polygon with side length s, and with height h, is therefore: = +.
The lateral area, L, of a circular cylinder, which need not be a right cylinder, is more generally given by =, where e is the length of an element and p is the perimeter of a right section of the cylinder. [9] This produces the previous formula for lateral area when the cylinder is a right circular cylinder.
The formula for the surface area of a sphere is more difficult to derive: because a sphere has nonzero Gaussian curvature, it cannot be flattened out. The formula for the surface area of a sphere was first obtained by Archimedes in his work On the Sphere and Cylinder. The formula is: [6] A = 4πr 2 (sphere), where r is the radius of the sphere.
If the areas of the two parallel faces are A 1 and A 3, the cross-sectional area of the intersection of the prismatoid with a plane midway between the two parallel faces is A 2, and the height (the distance between the two parallel faces) is h, then the volume of the prismatoid is given by [3] = (+ +).
b = the base side of the prism's triangular base, h = the height of the prism's triangular base L = the length of the prism see above for general triangular base Isosceles triangular prism: b = the base side of the prism's triangular base, h = the height of the prism's triangular base
The formula for an isosceles triangular base in the prism is: A1×2+A2×2+A3. The formula for a scalene triangular base in the prism is: A1×2+A2+A3+A4. To get the volume of a triangular prism you need to find the base area of the triangle(0.5*bh) and the length of the prism. The General formula that is commonly used is: Base Area*length or 0.5 ...