Search results
Results From The WOW.Com Content Network
An implicit function is a function that is defined by an implicit equation, that relates one of the variables, considered as the value of the function, with the others considered as the arguments. [ 1 ] : 204–206 For example, the equation x 2 + y 2 − 1 = 0 {\displaystyle x^{2}+y^{2}-1=0} of the unit circle defines y as an implicit function ...
The implicit derivative of y with respect to x, and that of x with respect to y, can be found by totally differentiating the implicit function + and equating to 0: + =, giving = and =. Application: change of coordinates
The derivative of the function at a point is the slope of the line tangent to the curve at the point. Slope of the constant function is zero, because the tangent line to the constant function is horizontal and its angle is zero. In other words, the value of the constant function, y, will not change as the value of x increases or decreases.
In calculus, the power rule is used to differentiate functions of the form () =, whenever is a real number.Since differentiation is a linear operation on the space of differentiable functions, polynomials can also be differentiated using this rule.
The implicit function theorem guarantees within a neighborhood of a point (,) the existence of a function such that (, ()) =. By the chain rule , the derivatives of function f {\displaystyle f} are
Second derivative; Implicit differentiation; ... If, for example, n = 2, the rule gives an expression for the second derivative of a product of two functions: ...
(These two functions also happen to meet (−1, 0) and (1, 0), but this is not guaranteed by the implicit function theorem.) The implicit function theorem is closely related to the inverse function theorem, which states when a function looks like graphs of invertible functions pasted together.
All derivatives of circular trigonometric functions can be found from those of sin(x) and cos(x) by means of the quotient rule applied to functions such as tan(x) = sin(x)/cos(x). Knowing these derivatives, the derivatives of the inverse trigonometric functions are found using implicit differentiation.