Search results
Results From The WOW.Com Content Network
The Euler line of any triangle goes through the triangle's orthocenter (the intersection of its three altitudes), its centroid (the intersection of its three medians), and its circumcenter (the intersection of the perpendicular bisectors of its three sides, which is also the center of the circumcircle that passes through the three vertices). In ...
Lexell's proof by breaking the triangle A ∗ B ∗ C into three isosceles triangles. The main idea in Lexell's c. 1777 geometric proof – also adopted by Eugène Catalan (1843), Robert Allardice (1883), Jacques Hadamard (1901), Antoine Gob (1922), and Hiroshi Maehara (1999) – is to split the triangle into three isosceles triangles with common apex at the circumcenter and then chase angles ...
The parameters in a triangle inequality can be the side lengths, the semiperimeter, the angle measures, the values of trigonometric functions of those angles, the area of the triangle, the medians of the sides, the altitudes, the lengths of the internal angle bisectors from each angle to the opposite side, the perpendicular bisectors of the ...
The perpendicular bisectors of the sides also play a prominent role in triangle geometry. The Euler line of an isosceles triangle is perpendicular to the triangle's base. The Droz-Farny line theorem concerns a property of two perpendicular lines intersecting at a triangle's orthocenter.
The angle bisector theorem is commonly used when the angle bisectors and side lengths are known. It can be used in a calculation or in a proof. An immediate consequence of the theorem is that the angle bisector of the vertex angle of an isosceles triangle will also bisect the opposite side.
As mentioned above, every triangle has a unique circumcircle, a circle passing through all three vertices, whose center is the intersection of the perpendicular bisectors of the triangle's sides. Furthermore, every triangle has a unique Steiner circumellipse, which passes through the triangle's vertices and has its center at the triangle's ...
The interior perpendicular bisector of a side of a triangle is the segment, falling entirely on and inside the triangle, of the line that perpendicularly bisects that side. The three perpendicular bisectors of a triangle's three sides intersect at the circumcenter (the center of the circle through the three vertices). Thus any line through a ...
The locus of points equidistant from two given points is a straight line that is called the perpendicular bisector of the line segment connecting the points. The perpendicular bisectors of any two sides of a triangle intersect in exactly one point. This point must be equidistant from the vertices of the triangle.)