Search results
Results From The WOW.Com Content Network
Polyvalence or multivalence refers to species that are not restricted to a specific number of valence bonds. Species with a single charge are univalent (monovalent). For example, the Cs + cation is a univalent or monovalent cation, whereas the Ca 2+ cation is a divalent cation, and the Fe 3+ cation is a trivalent cation.
[1] [2] [3] For the number of chemical bonds of atoms, the term "valence" is used (Fig. 1). For both atoms and larger species, the number of bonds may be specified: divalent species can form two bonds; a trivalent species can form three bonds; and so on. [4]
Monovalence or Monovalent may refer to: Monovalent ion, an atom, ion, or chemical group with a valency of one, which thus can form one covalent bond; Monovalent vaccine, a vaccine directed at only one pathogen; Monovalent antibody, an antibody with affinity for one epitope, antigen, or strain of microorganism
Atomic numbers (Z) are a special case of charge numbers, referring to the charge number of an atomic nucleus, as opposed to the net charge of an atom or ion. The charge numbers for ions (and also subatomic particles ) are written in superscript, e.g., Na + is a sodium ion with charge number positive one (an electric charge of one elementary ...
Four covalent bonds.Carbon has four valence electrons and here a valence of four. Each hydrogen atom has one valence electron and is univalent. In chemistry and physics, valence electrons are electrons in the outermost shell of an atom, and that can participate in the formation of a chemical bond if the outermost shell is not closed.
The nitrogen atom is uncharged and monovalent, [1] so it has only 6 electrons in its valence level—two covalent bonded and four non-bonded electrons. It is therefore considered an electrophile due to the unsatisfied octet. A nitrene is a reactive intermediate and is involved in many chemical reactions.
Enjoy a classic game of Hearts and watch out for the Queen of Spades!
The molar ionic strength, I, of a solution is a function of the concentration of all ions present in that solution. [3]= = where one half is because we are including both cations and anions, c i is the molar concentration of ion i (M, mol/L), z i is the charge number of that ion, and the sum is taken over all ions in the solution.