Search results
Results From The WOW.Com Content Network
The distance (or perpendicular distance) from a point to a line is the shortest distance from a fixed point to any point on a fixed infinite line in Euclidean geometry. It is the length of the line segment which joins the point to the line and is perpendicular to the line. The formula for calculating it can be derived and expressed in several ways.
Thus the length of a curve is a non-negative real number. Usually no curves are considered which are partly spacelike and partly timelike. In theory of relativity, arc length of timelike curves (world lines) is the proper time elapsed along the world line, and arc length of a spacelike curve the proper distance along the curve.
In the Greek deductive geometry exemplified by Euclid's Elements, distances were not represented as numbers but line segments of the same length, which were considered "equal". The notion of distance is inherent in the compass tool used to draw a circle , whose points all have the same distance from a common center point .
The length of a line segment is given by the Euclidean distance between its endpoints. A closed line segment includes both endpoints, while an open line segment excludes both endpoints; a half-open line segment includes exactly one of the endpoints.
The arc length (length of a line segment) defined by a polar function is found by the integration over the curve r(φ). Let L denote this length along the curve starting from points A through to point B, where these points correspond to φ = a and φ = b such that 0 < b − a < 2π.
Given two points P and Q on C, let s(P,Q) be the arc length of the portion of the curve between P and Q and let d(P,Q) denote the length of the line segment from P to Q. The curvature of C at P is given by the limit [citation needed]
In geometry, the mean line segment length is the average length of a line segment connecting two points chosen uniformly at random in a given shape. In other words, it is the expected Euclidean distance between two random points, where each point in the shape is equally likely to be chosen.
The coordinate-independent definition of the square of the line element ds in an n-dimensional Riemannian or Pseudo Riemannian manifold (in physics usually a Lorentzian manifold) is the "square of the length" of an infinitesimal displacement [2] (in pseudo Riemannian manifolds possibly negative) whose square root should be used for computing curve length: = = (,) where g is the metric tensor ...