Search results
Results From The WOW.Com Content Network
In mathematics, the Euclidean distance between two points in Euclidean space is the length of the line segment between them. It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem , and therefore is occasionally called the Pythagorean distance .
The distance from (x 0, y 0) to this line is measured along a vertical line segment of length |y 0 - (-c/b)| = |by 0 + c| / |b| in accordance with the formula. Similarly, for vertical lines (b = 0) the distance between the same point and the line is |ax 0 + c| / |a|, as measured along a horizontal line segment.
Arc length s of a logarithmic spiral as a function of its parameter θ. Arc length is the distance between two points along a section of a curve. Determining the length of an irregular arc segment by approximating the arc segment as connected (straight) line segments is also called curve rectification.
The first two values, Δ(1) and Δ(2), refer to the unit line segment and unit square respectively. For the three-dimensional case, the mean line segment length of a unit cube is also known as Robbins constant, named after David P. Robbins. This constant has a closed form, [6]
A closed line segment includes both endpoints, while an open line segment excludes both endpoints; a half-open line segment includes exactly one of the endpoints. In geometry , a line segment is often denoted using an overline ( vinculum ) above the symbols for the two endpoints, such as in AB .
The arc length (length of a line segment) defined by a polar function is found by the integration over the curve r(φ). Let L denote this length along the curve starting from points A through to point B , where these points correspond to φ = a and φ = b such that 0 < b − a < 2 π .
Here, p is the (positive) length of the line segment perpendicular to the line and delimited by the origin and the line, and is the (oriented) angle from the x-axis to this segment. It may be useful to express the equation in terms of the angle α = φ + π / 2 {\displaystyle \alpha =\varphi +\pi /2} between the x -axis and the line.
The intersection point falls within the first line segment if 0 ≤ t ≤ 1, and it falls within the second line segment if 0 ≤ u ≤ 1. These inequalities can be tested without the need for division, allowing rapid determination of the existence of any line segment intersection before calculating its exact point. [3]