When.com Web Search

  1. Ad

    related to: increasing vs decreasing interval examples math equations

Search results

  1. Results From The WOW.Com Content Network
  2. Absolutely and completely monotonic functions and sequences

    en.wikipedia.org/wiki/Absolutely_and_completely...

    The notions of completely and absolutely monotone function/sequence play an important role in several areas of mathematics. For example, in classical analysis they occur in the proof of the positivity of integrals involving Bessel functions or the positivity of Cesàro means of certain Jacobi series. [6]

  3. Exponential growth - Wikipedia

    en.wikipedia.org/wiki/Exponential_growth

    For example the function () = grows at an ever increasing rate, but is much slower than growing exponentially. For example, when =, it grows at 3 times its size, but when = it grows at 30% of its size. If an exponentially growing function grows at a rate that is 3 times is present size, then it always grows at a rate that is 3 times its present ...

  4. Monotonic function - Wikipedia

    en.wikipedia.org/wiki/Monotonic_function

    It is therefore not decreasing and not increasing, but it is neither non-decreasing nor non-increasing. A function f {\displaystyle f} is said to be absolutely monotonic over an interval ( a , b ) {\displaystyle \left(a,b\right)} if the derivatives of all orders of f {\displaystyle f} are nonnegative or all nonpositive at all points on the ...

  5. Concave function - Wikipedia

    en.wikipedia.org/wiki/Concave_function

    A differentiable function f is (strictly) concave on an interval if and only if its derivative function f ′ is (strictly) monotonically decreasing on that interval, that is, a concave function has a non-increasing (decreasing) slope. [3] [4] Points where concavity changes (between concave and convex) are inflection points. [5]

  6. Sigmoid function - Wikipedia

    en.wikipedia.org/wiki/Sigmoid_function

    Sigmoid functions have domain of all real numbers, with return (response) value commonly monotonically increasing but could be decreasing. Sigmoid functions most often show a return value (y axis) in the range 0 to 1. Another commonly used range is from −1 to 1.

  7. Function (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Function_(mathematics)

    In this example, the equation can be solved in y, giving =, but, in more complicated examples, this is impossible. For example, the relation y 5 + y + x = 0 {\displaystyle y^{5}+y+x=0} defines y as an implicit function of x , called the Bring radical , which has R {\displaystyle \mathbb {R} } as domain and range.

  8. Interval (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Interval_(mathematics)

    The identity element of this algebra is the condensed interval [1, 1]. If interval [x, y] is not in one of the ideals, then it has multiplicative inverse [1/x, 1/y]. Endowed with the usual topology, the algebra of intervals forms a topological ring. The group of units of this ring consists of four quadrants determined by the axes, or ideals in ...

  9. Interval arithmetic - Wikipedia

    en.wikipedia.org/wiki/Interval_arithmetic

    The main objective of interval arithmetic is to provide a simple way of calculating upper and lower bounds of a function's range in one or more variables. These endpoints are not necessarily the true supremum or infimum of a range since the precise calculation of those values can be difficult or impossible; the bounds only need to contain the function's range as a subset.