Ad
related to: definition of quantum in chemistry science experiment
Search results
Results From The WOW.Com Content Network
Quantum chemistry, also called molecular quantum mechanics, is a branch of physical chemistry focused on the application of quantum mechanics to chemical systems, particularly towards the quantum-mechanical calculation of electronic contributions to physical and chemical properties of molecules, materials, and solutions at the atomic level. [1]
Quantum mechanics is a fundamental theory that describes the behavior of nature at and below the scale of atoms. [2]: 1.1 It is the foundation of all quantum physics, which includes quantum chemistry, quantum field theory, quantum technology, and quantum information science. Quantum mechanics can describe many systems that classical physics cannot.
The word quantum is the neuter singular of the Latin interrogative adjective quantus, meaning "how much"."Quanta", the neuter plural, short for "quanta of electricity" (electrons), was used in a 1902 article on the photoelectric effect by Philipp Lenard, who credited Hermann von Helmholtz for using the word in the area of electricity.
In the Stern–Gerlach experiment discussed above, the quantum model predicts two possible values of spin for the atom compared to the magnetic axis. These two eigenstates are named arbitrarily 'up' and 'down'. The quantum model predicts these states will be measured with equal probability, but no intermediate values will be seen.
Experiments including electromagnetic radiation and matter - such as the photoelectric effect, Compton effect, and spectra of sunlight the due to the unknown element of Helium, the limitation of the Bohr model to Hydrogen, and numerous other reasons, lead to an entirely new mathematical model of matter and light: quantum mechanics.
The application of quantum mechanics to chemistry is known as quantum chemistry. Quantum mechanics can also provide quantitative insight into ionic and covalent bonding processes by explicitly showing which molecules are energetically favorable to which others and the magnitudes of the energies involved. [1]
Historically, experiments in quantum physics have often been described in semiclassical terms. For example, the spin of an atom in a Stern–Gerlach experiment might be treated as a quantum degree of freedom, while the atom is regarded as moving through a magnetic field described by the classical theory of Maxwell's equations.
Quantum biology is the study of applications of quantum mechanics and theoretical chemistry to aspects of biology that cannot be accurately described by the classical laws of physics. [1] An understanding of fundamental quantum interactions is important because they determine the properties of the next level of organization in biological systems.