When.com Web Search

  1. Ads

    related to: right triangles pythagorean theorem worksheet answers 6th

Search results

  1. Results From The WOW.Com Content Network
  2. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.

  3. Pythagorean triple - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_triple

    A triangle whose side lengths are a Pythagorean triple is a right triangle and called a Pythagorean triangle. A primitive Pythagorean triple is one in which a, b and c are coprime (that is, they have no common divisor larger than 1). [1] For example, (3, 4, 5) is a primitive Pythagorean triple whereas (6, 8, 10) is not.

  4. Talk:Law of cosines/Archive 1 - Wikipedia

    en.wikipedia.org/wiki/Talk:Law_of_cosines/Archive_1

    Yes, and that's the Pythagorean theorem (in the case where the right angles is the angle between the sides of lengths b and c). Michael Hardy 23:20, 1 March 2007 (UTC) The last time I checked, the Pythagorean theorem is a 2 + b 2 = c 2 {\displaystyle a^{2}+b^{2}=c^{2}} .

  5. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    The celebrated Pythagorean theorem (book I, proposition 47) states that in any right triangle, the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares whose sides are the two legs (the two sides that meet at a right angle).

  6. Bride's Chair - Wikipedia

    en.wikipedia.org/wiki/Bride's_Chair

    [6] The basic idea of the Bride's Chair proof of the Pythagorean theorem. From A, draw a line parallel to BD and CE. It will perpendicularly intersect BC and DE at K and L, respectively. Join CF and AD, to form the triangles BCF and BDA. Angles CAB and BAG are both right angles; therefore C, A, and G are collinear.

  7. Law of cosines - Wikipedia

    en.wikipedia.org/wiki/Law_of_cosines

    Duplicate the right triangle to form the isosceles triangle ACP. Construct the circle with center A and radius b, and its tangent h = BH through B. The tangent h forms a right angle with the radius b (Euclid's Elements: Book 3, Proposition 18; or see here), so the yellow triangle in Figure 8 is right. Apply the Pythagorean theorem to obtain

  8. Pythagorean trigonometric identity - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_trigonometric...

    Similar right triangles illustrating the tangent and secant trigonometric functions Trigonometric functions and their reciprocals on the unit circle. The Pythagorean theorem applied to the blue triangle shows the identity 1 + cot 2 θ = csc 2 θ, and applied to the red triangle shows that 1 + tan 2 θ = sec 2 θ.

  9. Right triangle - Wikipedia

    en.wikipedia.org/wiki/Right_triangle

    The legs and hypotenuse of a right triangle satisfy the Pythagorean theorem: the sum of the areas of the squares on two legs is the area of the square on the hypotenuse, + =. If the lengths of all three sides of a right triangle are integers, the triangle is called a Pythagorean triangle and its side lengths are collectively known as a ...