Search results
Results From The WOW.Com Content Network
The Penman equation describes evaporation (E) from an open water surface, and was developed by Howard Penman in 1948. Penman's equation requires daily mean temperature, wind speed, air pressure, and solar radiation to predict E. Simpler Hydrometeorological equations continue to be used where obtaining such data is impractical, to give comparable results within specific contexts, e.g. humid vs ...
At equilibrium, the rate of net energy production in the system must equal the rate of energy loss due to frictional dissipation at the surface, i.e. W i n = W o u t {\displaystyle W_{in}=W_{out}} The rate of energy loss per unit surface area from surface friction, W o u t {\displaystyle W_{out}} , is given by
E = Mass water evapotranspiration rate (g s −1 m −2) ET = Water volume evapotranspired (mm s −1) Δ = Rate of change of saturation specific humidity with air temperature. (Pa K −1) R n = Net irradiance (W m −2), the external source of energy flux G = Ground heat flux (W m −2), usually difficult to measure c p = Specific heat ...
Evaporation is an essential part of the water cycle. The sun (solar energy) drives evaporation of water from oceans, lakes, moisture in the soil, and other sources of water. In hydrology, evaporation and transpiration (which involves evaporation within plant stomata) are collectively termed evapotranspiration. Evaporation of water occurs when ...
An evaporation pan is used to hold water during observations for the determination of the quantity of evaporation at a given location. Such pans are of varying sizes and shapes, the most commonly used being circular or square. [3] The best known of the pans are the "Class A" evaporation pan and the "Sunken Colorado Pan". [4]
Inputs to SPEI datasets can include high-resolution potential evapotranspiration (PET) from the Global Land Evaporation Amsterdam Model (GLEAM) and hourly Potential Evapotranspiration (hPET). GLEAM is a set of algorithms designed to calculate actual evaporation, PET, evaporative stress, and root-zone soil moisture. [5]
The Hertz–Knudsen equation describes the non-dissociative adsorption of a gas molecule on a surface by expressing the variation of the number of molecules impacting on the surfaces per unit of time as a function of the pressure of the gas and other parameters which characterise both the gas phase molecule and the surface: [1] [2]
The classical Stefan problem aims to describe the evolution of the boundary between two phases of a material undergoing a phase change, for example the melting of a solid, such as ice to water. This is accomplished by solving heat equations in both regions, subject to given boundary and initial conditions.