Search results
Results From The WOW.Com Content Network
A fission nuclear power plant is generally composed of: a nuclear reactor, in which the nuclear reactions generating heat take place; a cooling system, which removes the heat from inside the reactor; a steam turbine, which transforms the heat into mechanical energy; an electric generator, which transforms the mechanical energy into electrical ...
In nuclear power technology, burnup is a measure of how much energy is extracted from a given amount of nuclear fuel [1].It may be measured as the fraction of fuel atoms that underwent fission in %FIMA (fissions per initial heavy metal atom) [2] or %FIFA (fissions per initial fissile atom) [3] as well as the actual energy released per mass of initial fuel in gigawatt-days/metric ton of heavy ...
In its central part, the reactor's core produces heat due to nuclear fission. With this heat, a coolant is heated as it is pumped through the reactor and thereby removes the energy from the reactor. The heat from nuclear fission is used to raise steam, which runs through turbines, which in turn power the electrical generators.
A fission fragment reactor is a nuclear reactor that generates electricity by decelerating an ion beam of fission byproducts instead of using nuclear reactions to generate heat. By doing so, it bypasses the Carnot cycle and can achieve efficiencies of up to 90% instead of 40–45% attainable by efficient turbine-driven thermal reactors.
Decay heat is the heat released as a result of radioactive decay. This heat is produced as an effect of radiation on materials: the energy of the alpha, beta or gamma radiation is converted into the thermal movement of atoms. Decay heat occurs naturally from decay of long-lived radioisotopes that are primordially present from the Earth's formation.
kinetic energy of the product particles (fraction of the kinetic energy of the charged nuclear reaction products can be directly converted into electrostatic energy); [5] emission of very high energy photons, called gamma rays; some energy may remain in the nucleus, as a metastable energy level.
Nuclear reactor physics is the field of physics that studies and deals with the applied study and engineering applications of chain reaction to induce a controlled rate of fission in a nuclear reactor for the production of energy. [1] Most nuclear reactors use a chain reaction to induce a controlled rate of nuclear fission in fissile material ...
The removal of heat from nuclear reactors is an essential step in the generation of energy from nuclear reactions.In nuclear engineering there are a number of empirical or semi-empirical relations used for quantifying the process of removing heat from a nuclear reactor core so that the reactor operates in the projected temperature interval that depends on the materials used in the construction ...