Search results
Results From The WOW.Com Content Network
The Flajolet–Martin algorithm is an algorithm for approximating the number of distinct elements in a stream with a single pass and space-consumption logarithmic in the maximal number of possible distinct elements in the stream (the count-distinct problem).
HyperLogLog is an algorithm for the count-distinct problem, approximating the number of distinct elements in a multiset. [1] Calculating the exact cardinality of the distinct elements of a multiset requires an amount of memory proportional to the cardinality, which is impractical for very large data sets. Probabilistic cardinality estimators ...
In computer science, the count-distinct problem [1] (also known in applied mathematics as the cardinality estimation problem) is the problem of finding the number of distinct elements in a data stream with repeated elements. This is a well-known problem with numerous applications.
The Misra–Gries algorithm uses O(k(log(m)+log(n))) space, where m is the number of distinct values in the stream and n is the length of the stream. The factor k accounts for the number of entries that are kept in the associative array A. Each entry consists of a value i and an associated counter c.
Here input is the input array to be sorted, key returns the numeric key of each item in the input array, count is an auxiliary array used first to store the numbers of items with each key, and then (after the second loop) to store the positions where items with each key should be placed, k is the maximum value of the non-negative key values and ...
Bucket sort can be seen as a generalization of counting sort; in fact, if each bucket has size 1 then bucket sort degenerates to counting sort. The variable bucket size of bucket sort allows it to use O(n) memory instead of O(M) memory, where M is the number of distinct values; in exchange, it gives up counting sort's O(n + M) worst-case behavior.
A minimal perfect hash function F is order preserving if keys are given in some order a 1, a 2, ..., a n and for any keys a j and a k, j < k implies F(a j) < F(a k). [9] In this case, the function value is just the position of each key in the sorted ordering of all of the keys.
A hash table uses a hash function to compute an index, also called a hash code, into an array of buckets or slots, from which the desired value can be found. During lookup, the key is hashed and the resulting hash indicates where the corresponding value is stored. A map implemented by a hash table is called a hash map.