Search results
Results From The WOW.Com Content Network
Using Euler's formula, any trigonometric function may be written in terms of complex exponential functions, namely and and then integrated. This technique is often simpler and faster than using trigonometric identities or integration by parts , and is sufficiently powerful to integrate any rational expression involving trigonometric functions.
The method is based on the observation that, for any integer >, one has: = {() /, /,. If the exponent n is zero then the answer is 1. If the exponent is negative then we can reuse the previous formula by rewriting the value using a positive exponent.
Complex replacement is used for solving differential equations when the non-homogeneous term is expressed in terms of a sinusoidal function or an exponential function, which can be converted into a complex exponential function differentiation and integration. Such complex exponential function is easier to manipulate than the original function.
A term rewriting given by a set of rules can be viewed as an abstract rewriting system as defined above, with terms as its objects and as its rewrite relation. For example, x ∗ ( y ∗ z ) → ( x ∗ y ) ∗ z {\displaystyle x*(y*z)\rightarrow (x*y)*z} is a rewrite rule, commonly used to establish a normal form with respect to the ...
The last expression is the logarithmic mean. = ( >) = (>) (the Gaussian integral) = (>) = (, >) (+) = (>)(+ +) = (>)= (>) (see Integral of a Gaussian function
The exponential function e x for real values of x may be defined in a few different equivalent ways (see Characterizations of the exponential function). Several of these methods may be directly extended to give definitions of e z for complex values of z simply by substituting z in place of x and using the complex algebraic operations. In ...
Since the exponential function equals its derivative, this implies that the exponential function is monotonically increasing. Extension of exponentiation to positive real bases: Let b be a positive real number. The exponential function and the natural logarithm being the inverse each of the other, one has = ().
The main article gives examples of generating functions for many sequences. Other examples of generating function variants include Dirichlet generating functions (DGFs), Lambert series, and Newton series. In this article we focus on transformations of generating functions in mathematics and keep a running list of useful transformations and ...