When.com Web Search

  1. Ads

    related to: adding vectors practice problems

Search results

  1. Results From The WOW.Com Content Network
  2. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    The simplest example of a vector space over a field F is the field F itself with its addition viewed as vector addition and its multiplication viewed as scalar multiplication. More generally, all n -tuples (sequences of length n ) ( a 1 , a 2 , … , a n ) {\displaystyle (a_{1},a_{2},\dots ,a_{n})} of elements a i of F form a vector space that ...

  3. Euclidean vector - Wikipedia

    en.wikipedia.org/wiki/Euclidean_vector

    The addition of two vectors a and b. This addition method is sometimes called the parallelogram rule because a and b form the sides of a parallelogram and a + b is one of the diagonals. If a and b are bound vectors that have the same base point, this point will also be the base point of a + b.

  4. Sylvester's triangle problem - Wikipedia

    en.wikipedia.org/wiki/Sylvester's_triangle_problem

    sum of three equal lengthed vectors. Sylvester's theorem or Sylvester's formula describes a particular interpretation of the sum of three pairwise distinct vectors of equal length in the context of triangle geometry. It is also referred to as Sylvester's (triangle) problem in literature

  5. Vector (mathematics and physics) - Wikipedia

    en.wikipedia.org/wiki/Vector_(mathematics_and...

    It is common to call these tuples vectors, even in contexts where vector-space operations do not apply. More generally, when some data can be represented naturally by vectors, they are often called vectors even when addition and scalar multiplication of vectors are not valid operations on these data. [disputed – discuss] Here are some examples.

  6. Parallelogram of force - Wikipedia

    en.wikipedia.org/wiki/Parallelogram_of_force

    Figure 1: Parallelogram construction for adding vectors. This construction has the same result as moving F 2 so its tail coincides with the head of F 1, and taking the net force as the vector joining the tail of F 1 to the head of F 2. This procedure can be repeated to add F 3 to the resultant F 1 + F 2, and so forth.

  7. Pythagorean addition - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_addition

    Pythagorean addition finds the length of the body diagonal of a rectangular cuboid, or equivalently the length of the vector sum of orthogonal vectors. Pythagorean addition (and its implementation as the hypot function) is often used together with the atan2 function to convert from Cartesian coordinates (,) to polar coordinates (,): [3] [4

  8. Vector addition system - Wikipedia

    en.wikipedia.org/wiki/Vector_addition_system

    More precisely, given an initial vector with non negative values, the vectors of the VAS can be added componentwise, given that every intermediate vector has non negative values. A vector addition system with states is a VAS equipped with control states. More precisely, it is a finite directed graph with arcs labelled by integer vectors. VASS ...

  9. Vector notation - Wikipedia

    en.wikipedia.org/wiki/Vector_notation

    In mathematics and physics, vector notation is a commonly used notation for representing vectors, [1] [2] which may be Euclidean vectors, or more generally, members of a vector space. For denoting a vector, the common typographic convention is lower case, upright boldface type, as in v .