Search results
Results From The WOW.Com Content Network
≡ 13 595.1 kg/m 3 × 1 cm × g 0: ≈ 1.333 22 × 10 3 Pa [33] centimetre of water (4 °C) cmH 2 O ≈ 999.972 kg/m 3 × 1 cm × g 0: ≈ 98.0638 Pa [33] foot of mercury (conventional) ftHg ≡ 13 595.1 kg/m 3 × 1 ft × g 0: ≈ 4.063 666 × 10 4 Pa [33] foot of water (39.2 °F) ftH 2 O ≈ 999.972 kg/m 3 × 1 ft × g 0: ≈ 2.988 98 × 10 3 ...
In light-water reactors, 1 kg of natural uranium – following a corresponding enrichment and used for power generation– is equivalent to the energy content of nearly 10,000 kg of mineral oil or 14,000 kg of coal. [16]
1.0 lb/cu ft (0.016 g/cm 3) lb/ft3 kg/m3 (lb/cu ft g/m3) ... 1.0 Wh (3.6 kJ) W.h W⋅h ... 1.0 imp gal (4.5 L; ...
1.62: Hydrazine decomposition (as monopropellant) 1.6: 1.6: Ammonium nitrate decomposition (as monopropellant) 1.4: 2.5: Thermal Energy Capacity of Molten Salt: 1 [citation needed] 98% [18] Molecular spring approximate [citation needed] 1: battery, Lithium–Manganese [19] [20] 0.83-1.01: 1.98-2.09: battery, Sodium–Sulfur: 0.72 [21] 1.23 ...
This is 17% lower than the earlier wider used one based on non measured values of 3.47 kJ · kg−1· °C−1. The contribution of the muscle to the specific heat of the body is approximately 47%, and the contribution of the fat and skin is approximately 24%.
The SI unit of volumetric heat capacity is joule per kelvin per cubic meter, J⋅K −1 ⋅m −3. The volumetric heat capacity can also be expressed as the specific heat capacity (heat capacity per unit of mass, in J⋅K −1 ⋅kg −1) times the density of the substance (in kg/L, or g/mL). [1] It is defined to serve as an intensive property.
kg/L: kg/L: 1000: kilogram per litre: kilograms per litre: kilogram per liter: kilograms per liter: lb/USgal: Density: kg/l: kg/l: 1000: kilogram per litre: kilograms per litre: kilogram per liter: kilograms per liter: lb/USgal: Density: kg/m3: kg/m 3: 1: kilogram per cubic metre: kilograms per cubic metre: kilogram per cubic meter: kilograms ...
The watt, kilogram, joule, and the second are part of the International System of Units (SI). The hour is not, though it is accepted for use with the SI.Since a watt equals one joule per second and because one hour equals 3600 seconds, one watt-hour per kilogram can be expressed in SI units as 3600 joules per kilogram.