Ads
related to: lead free low temperature solder connectors for aluminum
Search results
Results From The WOW.Com Content Network
Combination with lead-tin solder may dramatically lower melting point and lead to joint failure. [13] Low-temperature eutectic solder with high strength. [12] Particularly strong, very brittle. [11] Used extensively in through-hole technology assemblies in IBM mainframe computers where low soldering temperature
Tin-silver-copper (Sn-Ag-Cu, also known as SAC), is a lead-free alloy commonly used for electronic solder.It is the main choice for lead-free surface-mount technology (SMT) assembly in the industry, [1] as it is near eutectic, with adequate thermal fatigue properties, strength, and wettability. [2]
Common solder alloys include tin-lead, tin-silver, and tin-copper, among others. Lead-free solder has also become more widely used in recent years due to health and environmental concerns associated with the use of lead. In addition to the type of solder used, the temperature and method of heating also play a crucial role in the soldering process.
Most lead-free replacements for conventional 60/40 and 63/37 Sn-Pb solder have melting points from 50 to 200 °C higher, [17] though there are also solders with much lower melting points. Lead-free solder typically requires around 2% flux by mass for adequate wetting ability. [18]
Solderability when using lead-free alloys can differ significantly from solderability when using lead based alloys. Noble metals may be easy to solder but they have brittle joints. The metals in the good category require a large amount of heat therefore oxidation is an issue. To overcome this a flux is required.
The most common dip soldering operations use zinc-aluminum and tin-lead solders. Solder pot metal: cast iron or steel, electrically heated. Bath temperature: 220 to 260 °C (for binary tin-lead alloys) or 350 to 400 °C (for lead-free alloys) Solder composition: 60% Sn, 40% Pb or eutectic alloy.