Ad
related to: what is riemann's hypothesis example
Search results
Results From The WOW.Com Content Network
The extended Riemann hypothesis for abelian extension of the rationals is equivalent to the generalized Riemann hypothesis. The Riemann hypothesis can also be extended to the L-functions of Hecke characters of number fields. The grand Riemann hypothesis extends it to all automorphic zeta functions, such as Mellin transforms of Hecke eigenforms.
The Riemann Hypothesis. Today’s mathematicians would probably agree that the Riemann Hypothesis is the most significant open problem in all of math. ... For example, if s=2, ...
The extended Riemann hypothesis asserts that for every number field K and every complex number s with ζ K (s) = 0: if the real part of s is between 0 and 1, then it is in fact 1/2. The ordinary Riemann hypothesis follows from the extended one if one takes the number field to be Q, with ring of integers Z.
Zeros of the Riemann zeta except negative even integers are called "nontrivial zeros". The Riemann hypothesis states that the real part of every nontrivial zero must be 1 / 2 . In other words, all known nontrivial zeros of the Riemann zeta are of the form z = 1 / 2 + yi where y is a real number.
Sometimes, a conjecture is called a hypothesis when it is used frequently and repeatedly as an assumption in proofs of other results. For example, the Riemann hypothesis is a conjecture from number theory that — amongst other things — makes predictions about the distribution of prime numbers. Few number theorists doubt that the Riemann ...
The Riemann hypothesis is concerned with the locations of these nontrivial zeros, and states that: The real part of every nontrivial zero of the Riemann zeta function is 1/2. The Riemann hypothesis is that all nontrivial zeros of the analytical continuation of the Riemann zeta function have a real part of 1 / 2 .
The Riemann hypothesis was one of a series of conjectures he made about the function's properties. In Riemann's work, there are many more interesting developments. He proved the functional equation for the zeta function (already known to Leonhard Euler), behind which a theta function lies.
A Riemann problem, named after Bernhard Riemann, is a specific initial value problem composed of a conservation equation together with piecewise constant initial data which has a single discontinuity in the domain of interest.