Search results
Results From The WOW.Com Content Network
Site-directed mutagenesis is used to generate mutations that may produce a rationally designed protein that has improved or special properties (i.e.protein engineering). Investigative tools – specific mutations in DNA allow the function and properties of a DNA sequence or a protein to be investigated in a rational approach. Furthermore ...
ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13)—also known as von Willebrand factor-cleaving protease (VWFCP)—is a zinc-containing metalloprotease enzyme that cleaves von Willebrand factor (vWf), a large protein involved in blood clotting.
The mutation impairs transcription of the protein, so affected cells produce only 5-10% of the frataxin of healthy cells. [45] This leads to iron accumulation in the mitochondria, and makes cells vulnerable to oxidative damage. Research shows that GAA repeat length is correlated with disease severity. [46]
DNA may be modified, either naturally or artificially, by a number of physical, chemical and biological agents, resulting in mutations. Hermann Muller found that "high temperatures" have the ability to mutate genes in the early 1920s, [2] and in 1927, demonstrated a causal link to mutation upon experimenting with an x-ray machine, noting phylogenetic changes when irradiating fruit flies with ...
Example of alanine scanning. The native protein (top row) and each possible point mutation to alanine is considered. In molecular biology, alanine scanning is a site-directed mutagenesis technique used to determine the contribution of a specific residue to the stability or function of a given protein. [1]
The permissive temperature is the temperature at which a temperature-sensitive mutant gene product takes on a normal, functional phenotype. [2] When a temperature-sensitive mutant is grown in a permissive condition, the mutant gene product behaves normally (meaning that the phenotype is not observed), even if there is a mutant allele present.
The original model assumes that if an allele has a mutation that causes it to change in state, mutations that occur in repetitive regions of the genome will increase or decrease by a single repeat unit at a fixed rate (i.e. by the addition or subtraction of one repeat unit per generation) and these changes in allele states are expressed by an integer (. . .
Transposon mutagenesis is much more effective than chemical mutagenesis, with a higher mutation frequency and a lower chance of killing the organism. Other advantages include being able to induce single hit mutations, being able to incorporate selectable markers in strain construction, and being able to recover genes after mutagenesis. [ 2 ]