When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    In mathematics, exponentiation, denoted b n, is an operation involving two numbers: the base, b, and the exponent or power, n. [1] When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, b n is the product of multiplying n bases: [1] = ⏟.

  3. Tetration - Wikipedia

    en.wikipedia.org/wiki/Tetration

    Exponentiating the next leftward a (call this the 'next base' b), is to work leftward after obtaining the new value b^c. Working to the left, use the next a to the left, as the base b, and evaluate the new b^c. 'Descend down the tower' in turn, with the new value for c on the next downward step.

  4. Power of 10 - Wikipedia

    en.wikipedia.org/wiki/Power_of_10

    In mathematics, a power of 10 is any of the integer powers of the number ten; in other words, ten multiplied by itself a certain number of times (when the power is a positive integer). By definition, the number one is a power (the zeroth power) of ten. The first few non-negative powers of ten are:

  5. Lambert W function - Wikipedia

    en.wikipedia.org/wiki/Lambert_W_function

    The product logarithm Lambert W function plotted in the complex plane from −2 − 2i to 2 + 2i The graph of y = W(x) for real x < 6 and y > −4.The upper branch (blue) with y ≥ −1 is the graph of the function W 0 (principal branch), the lower branch (magenta) with y ≤ −1 is the graph of the function W −1.

  6. Order of operations - Wikipedia

    en.wikipedia.org/wiki/Order_of_operations

    In mathematics and computer programming, the order of operations is a collection of rules that reflect conventions about which operations to perform first in order to evaluate a given mathematical expression. These rules are formalized with a ranking of the operations.

  7. Power of two - Wikipedia

    en.wikipedia.org/wiki/Power_of_two

    A power of two is a number of the form 2 n where n is an integer, that is, the result of exponentiation with number two as the base and integer n as the exponent. In the fast-growing hierarchy , 2 n is exactly equal to f 1 n ( 1 ) {\displaystyle f_{1}^{n}(1)} .

  8. Fourth power - Wikipedia

    en.wikipedia.org/wiki/Fourth_power

    In arithmetic and algebra, the fourth power of a number n is the result of multiplying four instances of n together. So: n 4 = n × n × n × n. Fourth powers are also formed by multiplying a number by its cube. Furthermore, they are squares of squares.

  9. Power law - Wikipedia

    en.wikipedia.org/wiki/Power_law

    The distributions of a wide variety of physical, biological, and human-made phenomena approximately follow a power law over a wide range of magnitudes: these include the sizes of craters on the moon and of solar flares, [2] cloud sizes, [3] the foraging pattern of various species, [4] the sizes of activity patterns of neuronal populations, [5] the frequencies of words in most languages ...