Search results
Results From The WOW.Com Content Network
The first lenses were likely spherical or cylindrical glass containers filled with water, which people noticed had the ability to focus light. Simple convex lenses have surfaces that are small sections of a sphere. A ball lens is just a simple lens where the surfaces' radii of curvature are equal to the radius of the lens itself.
He invented the eyeglass lens designs that became the Zeiss Punktal lenses. The world's first commercial, mass-produced aspheric lens element was manufactured by Elgeet for use in the Golden Navitar 12 mm f /1.2 normal lens for use on 16 mm movie cameras in 1956. [12] This lens received a great deal of industry acclaim during its day.
Diagram showing a section through the centre of a cone (1) subtending a solid angle of 1 steradian in a sphere of radius r, along with the spherical "cap" (2). The external surface area A of the cap equals r2 only if solid angle of the cone is exactly 1 steradian. Hence, in this figure θ = A/2 and r = 1.
[31] [32] As shown above, the Gaussian lens equation for a spherical lens is derived such that the 2nd surface of the lens images the image made by the 1st lens surface. For multi-lens imaging, 3rd lens surface (the front surface of the 2nd lens) can image the image made by the 2nd surface, and 4th surface (the back surface of the 2nd lens) can ...
An approximation for the volume of a thin spherical shell is the surface area of the inner sphere multiplied by the thickness t of the shell: [2] V ≈ 4 π r 2 t , {\displaystyle V\approx 4\pi r^{2}t,}
A spherical lens has an aplanatic point (i.e., no spherical aberration) only at a lateral distance from the optical axis that equals the radius of the spherical surface divided by the index of refraction of the lens material. Spherical aberration makes the focus of telescopes and other instruments less than ideal. This is an important effect ...
For a single lens surrounded by a medium of refractive index n = 1, the locations of the principal points H and H ′ with respect to the respective lens vertices are given by the formulas = ′ = (), where f is the focal length of the lens, d is its thickness, and r 1 and r 2 are the radii of curvature of its surfaces. Positive signs indicate ...
The sagitta also has uses in physics where it is used, along with chord length, to calculate the radius of curvature of an accelerated particle. This is used especially in bubble chamber experiments where it is used to determine the momenta of decay particles. Likewise historically the sagitta is also utilised as a parameter in the calculation ...